

Antengene 2025 R&D Day

November 2025

Disclaimer

By attending the meeting where this presentation is made, or by reading the presentation materials, you agree to be bound by the following:

The information in this presentation has been prepared by representatives of Antengene Corporation Limited (the "Company" and, together with its subsidiaries, the "Group") for use in presentations by the Group for information purpose. No part of this presentation will form the basis of, or be relied on in connection with, any contract or commitment or investment decision.

Certain statements contained in this presentation and in the accompanying oral presentation, may constitute forward-looking statements. Examples of such forward-looking statements include those regarding investigational drug candidates and clinical trials and the status and related results thereto, as well as those regarding continuing and further development and commercialization efforts and transactions with third parties. Such statements, based as they are on the current analysis and expectations of management, inherently involve numerous risks and uncertainties, known and unknown, many of which are beyond the Company's control. Such risks include but are not limited to: the impact of general economic conditions, general conditions in the pharmaceutical industry, changes in the global and regional regulatory environment in the jurisdictions in which the Company's does business, market volatility, fluctuations in costs and changes to the competitive environment. Consequently, actual future results may differ materially from the anticipated results expressed in the forward-looking statements. In the case of forward-looking statements regarding investigational drug candidates and continuing further development efforts, specific risks which could cause actual results to differ materially from the Company's current analysis and expectations include: failure to demonstrate the safety, tolerability and efficacy of the Company's drug candidates, final and quality controlled verification of data and the related analyses, the expense and uncertainty of obtaining regulatory approval, the possibility of having to conduct additional clinical trials and the Company's reliance on third parties to conduct drug development, manufacturing and other services. Further, even if regulatory approval is obtained, pharmaceutical products are generally subject to stringent on-going governmental regulation, challenges in gaining market acceptance and competition. These statements are also subject to a number of material risks and unce

Forward-looking statements are sometimes identified by the use of forward-looking terminology such as "believe," "expects," "may," "will," "could," "should," "shall," "risk," "intends," "estimates," "plans," "predicts," "continues," "assumes," "positioned" or "anticipates" or the negative thereof, other variations thereon or comparable terminology or by discussions of strategy, plans, objectives, goals, future events or intentions.

No representation or warranty, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information, or opinions contained herein. The information set out herein may be subject to updating, revision, verification and amendment and such information may change materially.

This presentation and the information contained herein is solely for your information and may not be reproduced or redistributed in any manner to any other person, in whole or in part. In particular, neither the information contained in this presentation nor any copy hereof may be, directly or indirectly, taken or transmitted into or distributed in any jurisdiction which prohibits the same except in compliance with applicable securities laws. This presentation and the accompanying oral presentation contains data and information obtained from third-party studies and internal company analysis of such data and information. We have not independently verified the data and information obtained from these sources.

By attending this presentation, you acknowledge that you will be solely responsible for your own assessment of the market and the market position of the Group and that you will conduct your own analysis and be solely responsible for forming your own view of the potential future performance of the business of the Group.

发言嘉宾 / Speakers Today

特邀嘉宾 / Guest Speaker

王鑫教授 / Professor Wang Xin

国家癌症中心 / 中国医学科学院肿瘤医院药物临床试验中心主任医师 Chief Physician, Drug Clinical Trial Center, National Cancer Center / Cancer Hospital of the Chinese Academy of Medical Sciences

山西省肿瘤医院 中国医学科学院肿瘤医院山西医院 山西医科大学附属肿瘤医院

德琪医药管理团队 / Antengene Management Team

梅建明博士 / Jay Mei, M.D., Ph.D. 创始人、董事长兼首席执行官 Founder, Chairman, and Chief Executive Officer

郭智医生 / Godfrey Guo, M.D. 临床研究副总裁 Vice President, Clinical Development

侯冰博士 / Bing Hou, Ph.D.

新药发现及转化医学副总裁 Vice President, Head of Discovery Science & Translational Medicine

曹洋先生 / Kavin Cao, CFA 董秘兼集团副总裁 Board Secretary and Corporate Vice President

Revolutionizing Patient Outcomes with Innovative R&D

Jay Mei, M.D., Ph.D.
Founder, Chairman, and Chief Executive Officer

Antengene Today

4 Focused R&D Areas

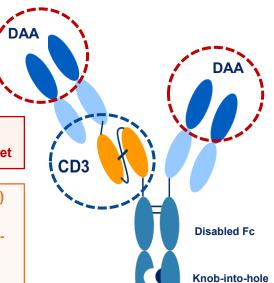
Antibody Drug Conjugates (ADC)

T Cell Engagers (TCE)

Immuno-Oncology (IO)

Autoimmune Diseases

10 Markets APAC Commercialization


* Approved markets in China also includes Taiwan, Hong Kong, and Macau

(AnTenGager[™] – 2nd Generation "2+1" TCE Platform with Steric Hindrance Masking Technology)

"Plug and Play" Disease Associated Antigens (DAA)

 Compatible with diverse DAAs, enabling the discovery & development of TCEs across multiple therapeutic areas

Bivalent Binding of DAA

■ Enables the targeting of **low-expressing target**

Proprietary CD3 Sequences (Patented)

- Binds to a unique conformational epitope (CD3εγ or CD3εσ complex), with fast-on-fastoff binding kinetics
- Stronger T cell dependent cytotoxicity and reduced cytokine release

Steric Hindrance Masking Technology

■ Reduced risk of hook effect and cytokine release syndrome (CRS)

Antengene Pipeline Overview – Globally First / Best-in-Class Pipeline Across Novel Modalities

Antibody Drug Conjugates (ADCs) CLDN18.2 ADC with Efficacy Across the ATG-022 (CLDN18.2) CLDN18.2+ Gastric Cancer (GC) and Other Solid Tumors Widest Patient Population; BTD in GC ATG-125 (B7-H3 x PD-L1) IO+ADC in One Drug Solid Tumors Pre-clinical IO+ADC in One Drug Solid Tumors Pre-clinical

Phase II

CD24

Immuno-Oncology (IO)						
ATG-037 (CD73) Phase lb/ll	CPI-resistant Melanoma and Non-small Cell Lung Cancer	Oral Bioavailable; Demonstrated Efficacy in CPI-resistant Patients				
ATG-101 (PD-L1 x 4-1BB) Phase I	Solid Tumors	No Liver Toxicity				
ATG-031 (CD24) Phase I	Solid Tumors	First-in-class Myeloid Regulator				

Auto	Diseases	
ATG-201 (CD19 x CD3) IND-enabling	B Cell Driven Autoimmune Diseases	Deep B Cell Depletion with Low CRS
ATG-207 (Undisclosed Bifunctional Biologics) Discovery	T Cell Driven Autoimmune Diseases	First-in-Class; Induces T _{reg} and T Cell Exhaustion

T Cell	Engagers (TCEs)	
ATG-201 (CD19 x CD3) IND-enabling	B Cell Driven Autoimmune Diseases	Deep B Cell Depletion with Low CR
ATG-106 (CDH6 x CD3) Pre-clinical	Ovarian Cancer and Kidney Cancer	First-in-Class CDH6 TCE
ATG-112 (ALPPL2 x CD3) Pre-clinical	Gynecological Tumors and Lung Cancer	First-in-Class ALPPL2 TCE
ATG-110 (LY6G6D x CD3) Pre-clinical	Microsatellite Stable (MSS) Colorectal Cancer	For IO-resistant Colorectal Cancer
ATG-021 (GPRC5D x CD3) Pre-clinical	Multiple Myeloma	
ATG-102 (LILRB4 x CD3) Pre-clinical	Acute Myeloid Leukemia and Chronic Myelomonocytic Leukemia	Biparatopic
ATG-107 (FLT3 x CD3) Pre-clinical	Acute Myeloid Leukemia	
ATG-115 (Undisclosed Bispecific TCE) Pre-clinical	Liver Cancer	Novel TAA Discovered by Al
Undisclosed Trispecific TCE Discovery	Metastatic Castration-resistant Prostate Cancer	First-in-Class
Undisclosed Trispecific TCE Discovery	Small Cell Lung Cancer and Neuroendocrine Tumors	First-in-Class

Key Highlights for Today

Clinical Highlights

ATG-022

Globally Best-in-Class (BIC) Claudin 18.2 ADC

- ✓ Best-in-class efficacy (IHC 1+ ≥ 1%), mOS (14.72 months), and safety profile (Gr ≥ 3 TRAE of 16.1%) across modalities
- ✓ Potential to transform 1L treatment in gastric cancer via combo with anti-PD-1 and chemotherapy

ATG-037

Globally BIC Oral CD73 Small Molecule Inhibitor

- ✓ Proof of concept in CPI-resistant tumors, supported by encouraging activity in CPI-resistant melanoma and non-small cell lung cancer
- ✓ Strong potential for broader tumor expansion and NextGen IO combo strategies

ATG-101

PD-L1 x 4-1BB Bispecific Antibody with No Liver Tox

✓ Targeting "cold", "hot", and CPI-resistant / relapsed tumors with combo potential

Discovery and Pre-clinical Highlights

Antibody Drug Conjugates

ATG-125

B7-H3 x PD-L1 Bispecific ADC
IO + ADC for Solid Tumors

AnTenGager™

Proprietary Next Generation "2+1" TCE Platform

ATG-201

CD19 x CD3 TCE

B Cell Related
Autoimmune Diseases

ATG-106

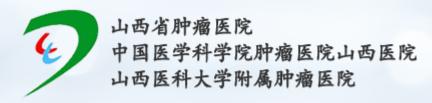
CDH6 x CD3 TCE

Ovarian Cancer and Kidney Cancer

ATG-112

ALPPL2 x CD3 TCE

Gynecological Tumors and Lung Cancer


Autoimmune Diseases

ATG-207

Undisclosed Bifunctional Biologic
T Cell Driven Autoimmune Diseases

Targeting CLDN18.2 for Tumor Therapy

Investigator's Insights on ATG-022

王鑫教授 / Professor Wang Xin

国家癌症中心 / 中国医学科学院肿瘤医院药物临床试验中心主任医师

Chief Physician, Drug Clinical Trial Center, National Cancer Center / Cancer Hospital of the Chinese Academy of Medical Sciences

王鑫教授 / Professor Wang Xin

肿瘤学博士、博士后 国家癌症中心/中国医学科学院肿瘤医院 药物临床试验 中心主任医师 中国医学科学院肿瘤医院山西医院 GCP中心主任/临床试验病房主任 国家药监局医疗器械评审中心专家

兼任:

中国控烟协会理事 中国抗癌协会青年理事 中国抗癌协会肿瘤科普防治专业委员会副秘书长 中国控制吸烟协会控烟与肺癌防治专业副主任委员; 北京肿瘤学会肺癌专委会委员 北京癌症防治学会科普与教育委员会副主任委员

山西省肿瘤医院 中国医学科学院肿瘤医院山西医院 山西医科大学附属肿瘤医院

免责声明 Disclaimer

本演示文稿由德琪医药与王鑫教授共同准备,仅供参考。与会者需知悉前瞻性陈述所固有的风险,包括与在研药物相关的不确定性。文中观点仅代表王鑫教授个人意见,德琪医药不对其准确性作出任何保证。所有前瞻性陈述均涉及超出德琪医药控制范围的不确定因素。

本材料尚未经过科学验证,德琪医药不对其公正性、准确性或完整性作出任何陈述或保证。未经书面许可,与会者不得复制、传播或分发本演示文稿的任何内容。

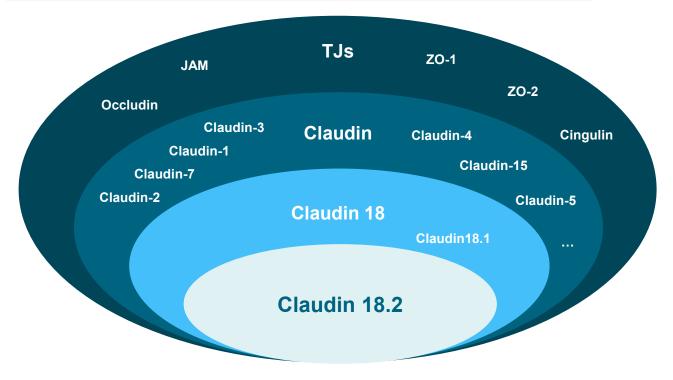
参与本会议即表明您同意自行对相关信息进行判断评估,并遵守所有适用的法律法规。本演示文稿不构成任何投资建议。请在作出任何决定前自行分析并咨询专业人士。

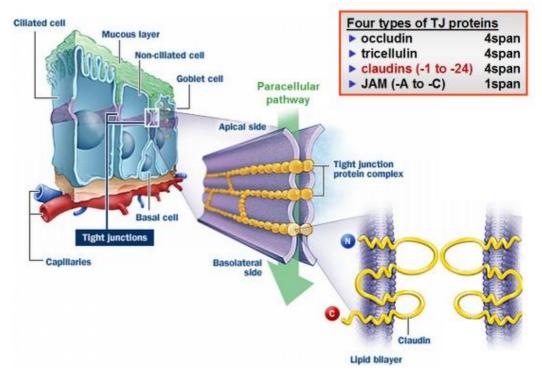
This presentation, prepared by Antengene Corporation Limited in collaboration with Professor Wang Xin, is provided for informational purposes only. Attendees acknowledge the inherent risks associated with forward-looking statements, including those concerning investigational drug candidates. The views expressed are solely those of Professor Wang and are not guaranteed to be accurate. All forward-looking statements involve uncertainties beyond Antengene's control.

The material presented has not undergone scientific validation, and no representation or warranty is made regarding its fairness, accuracy, or completeness. Attendees may not reproduce or distribute any part of this presentation without prior written consent.

By participating, you agree to take full responsibility for your own evaluation of the information provided and to comply with all applicable laws and regulations. Nothing in this presentation constitutes investment advice. Please conduct your own analysis and consult qualified professionals before making any decisions.

Claudin 18.2: An Over-Expressed Tumor Antigen in Multiple Tumor Types

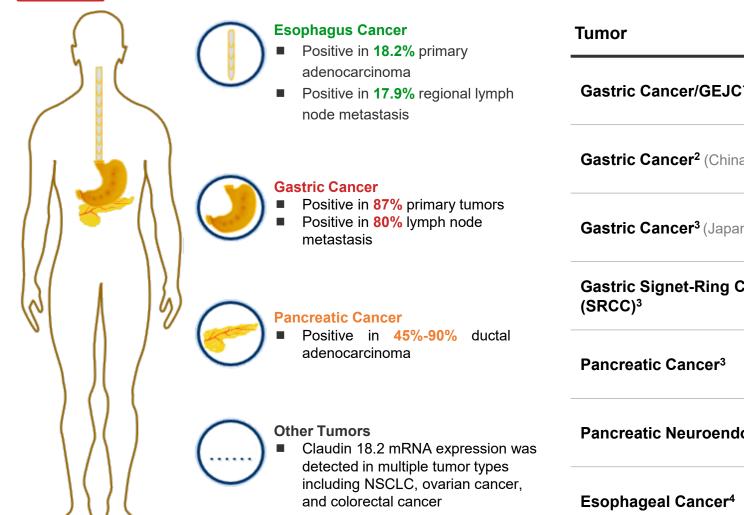



CLDN18.2 in Healthy Tissues

- ✓ Claudins form **tight junctions** that control movement between cells
- ✓ CLDN18.2 is expressed only in differentiated gastric mucosal epithelial cells
- ✓ Very limited expression in healthy tissues and is absent in undifferentiated gastric stem cells

CLDN18.2 in Cancer

✓ CLDN18.2 is overexpressed in multiple cancer types (gastric, pancreatic, esophageal, gynecologic tumors, etc.) – promising marker for diagnosing and treating multiple tumor types



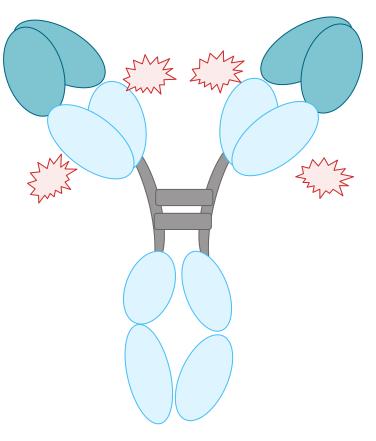
Claudin 18.2: An Over-Expressed Tumor Antigen in Multiple Tumor Types (Cont.)

Tumor	Sample Size	Claudin 18.2 Positive
Gastric Cancer/GEJC¹ (Global)	3,576	73.3%
Gastric Cancer ² (China)	300	72%
Gastric Cancer ³ (Japan)	262	87%
Gastric Signet-Ring Cell Carcinoma (SRCC) ³	105	95.2%
Pancreatic Cancer ³	174	59.2%
Pancreatic Neuroendocrine Tumors ³	25	20%
Esophageal Cancer ⁴	22	78%

^{1.} Shitara, K., Xu, RH., Ajani, J.A. et al. Global prevalence of claudin 18 isoform 2 in tumors of patients with locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma. Gastric Cancer 27, 1058–1068 (2024)

^{2.} Journal for ImmunoTherapy of Cancer 2022;10:doi: 10.1136/jitc-2022-SITC2022.0105 3. Biomark Res . 2022 May 31;10(1):38

^{4.} Sahin U, Koslowski M, Dhaene K, Usener D, Brandenburg G, Seitz G, Huber C, Türeci O. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin Cancer Res. 2008;14:7624–7634. doi: 10.1158/1078-0432.CCR-08-1547..



Molecular Design of ATG-022

High Affinity Antibody

✓ Enables binding to cancer cells with low CLDN18.2 expression

Promotes rapid internalization,
 and enhances the bystander
 effect

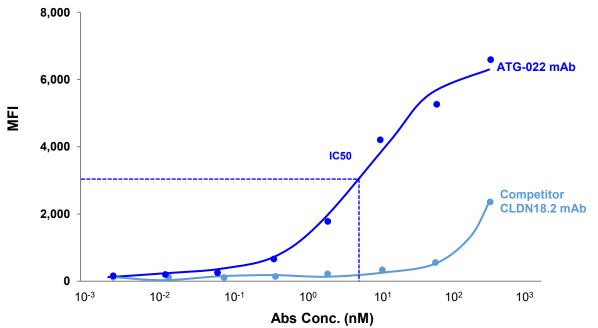
Cys based conjugation Mean DAR = 4 Specific DAR4 >70%

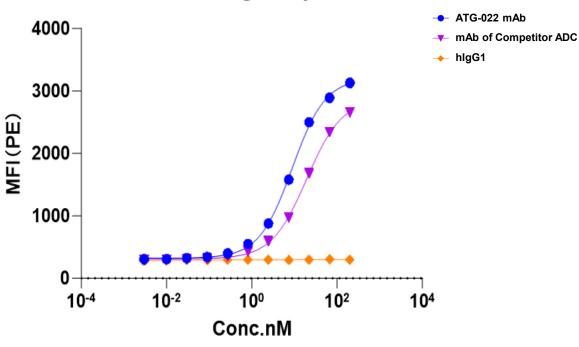
Clinical Data Highlights

Efficacy across all CLDN18.2 expression levels

Devoid of systemic toxicities

Preliminary efficacy observed in a non-Gl tumor type

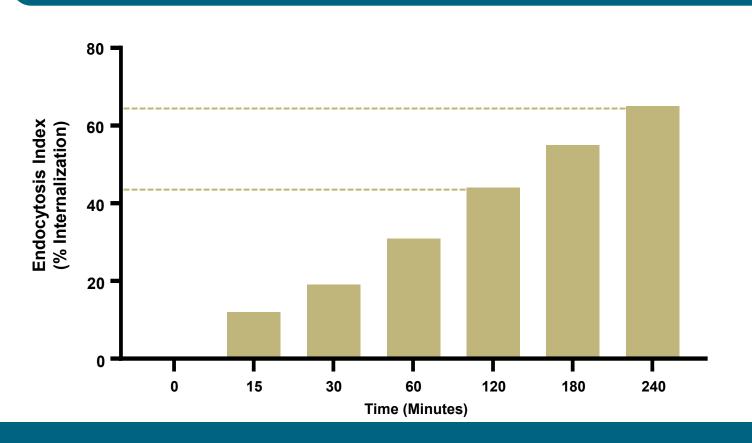

ATG-022 mAb Demonstrated Higher Binding Affinity Than a Competitor CLDN18.2 mAb and the mAb Component of a Competitor ADC in Tumor Cells Expressing Low Claudin 18.2

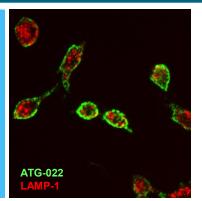

■ The mAb of ATG-022 demonstrated **higher binding affinity (EC) to tumor cells expressing low Claudin18.2** (SNU620) than both competitive benchmarks, including a competitor CLDN18.2 mAb and the mAb component of a competitor ADC

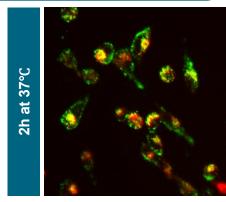
	ATG-022 mAb	Competitor CLDN18.2 mAb		ATG-022 mAb	mAb of Competitor ADC	hlgG1
EC50	5.317nM	NE	EC50	8.864nM	19.39nM	NE

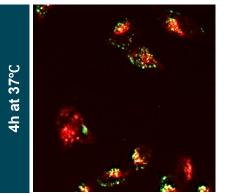
Cell based binding Assay on SNU620

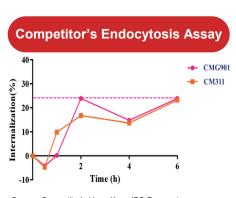
Cell based binding Assay on SNU620



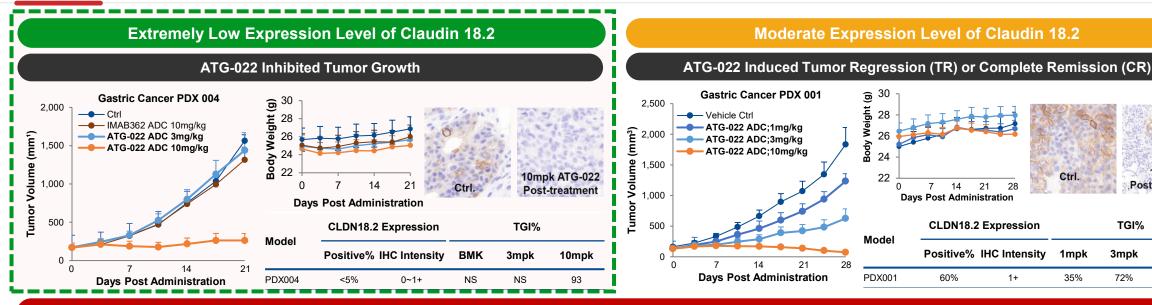

ATG-022 Demonstrated Better Internalization Capability vs. Competitor ADC


- **Higher Internalization:** ATG-022 achieves **over 60% internalization at 240 minutes**, compared to ~20% for competitor's ADC and the antibody component of the ADC at their peak
- Faster Internalization: ATG-022 reaches over 40% internalization within 120 minutes, while competitor's ADC and the antibody component of the ADC only achieve around 20-25% within the same timeframe

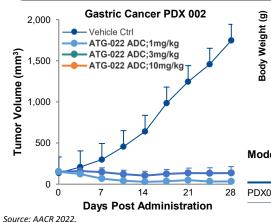

ATG-022 - Endocytosis Assay in CHO-L1-18.2 Cells

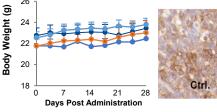


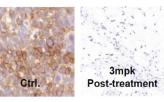
4h at 4°C



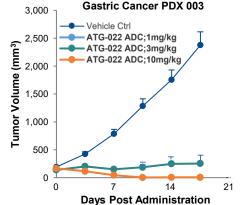
Source: Competitor's Hong Kong IPO Prospectu

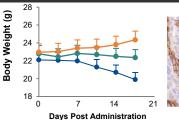

ATG-022 Demonstrated Strong *In Vivo* Efficacy in Various Claudin 18.2 **Level PDX Models**

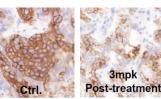




High Expression Level of Claudin 18.2


ATG-022 Induced Tumor Regression (TR) or Complete Remission (CR) **Gastric Cancer PDX 002 Gastric Cancer PDX 003**





del	CLDN18.2	2 Expression		TGI%	
uei	Positive%	IHC Intensity	1mpk	3mpk	10mpk
(002	90%	1+~2+	TR	TR	CR

10mpk

Post-treatment

10mpk

TGI%

3mpk

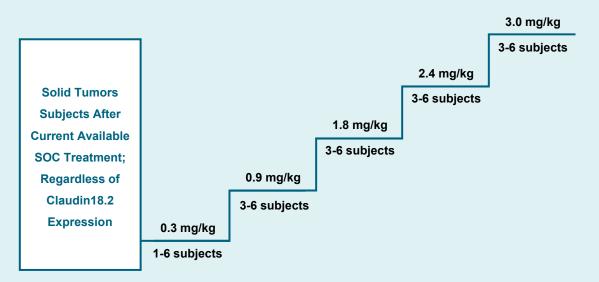
72%

1mpk

35%

CLDN18.2	2 Expression	TGI%		
Positive%	IHC Intensity	3mpk	10mpk	
70%	2+~3+	94%	CR	
	Positive%		Positive% IHC Intensity 3mpk	

ATG-022: Phase I/II "CLINCH" Trial Ongoing Study Design

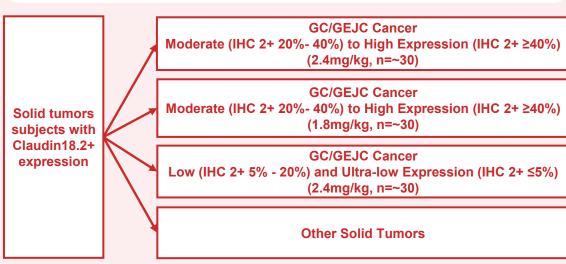

Population: Subjects with solid tumors, regardless of Claudin 18.2 expression and histology

Primary Endpoints: Safety and tolerability, MTD and/or RP2D

Phase II Dose Expansion Study Ongoing with Multiple Centers in Australia and the Mainland of China

Phase I: Dose Escalation

(Multiple Tumor Types without Pre-screening for Claudin 18.2 Expression Levels)


Primary Objectives: Safety, tolerability. Define MTD and RP2D

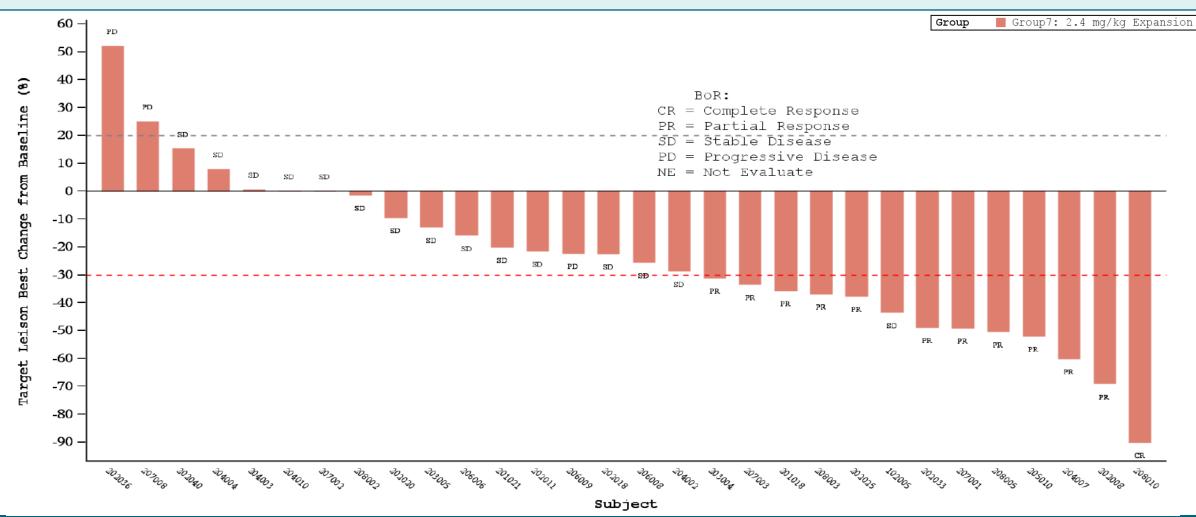
Secondary Objectives: Evaluate preliminary efficacy (RECIST 1.1), measure ADA, CLDN18.2 expression

CLDN18.2 Status: No expression requirements

Phase II: Dose Expansion

20~30 Subjects in Each Tumor Type / Cohort

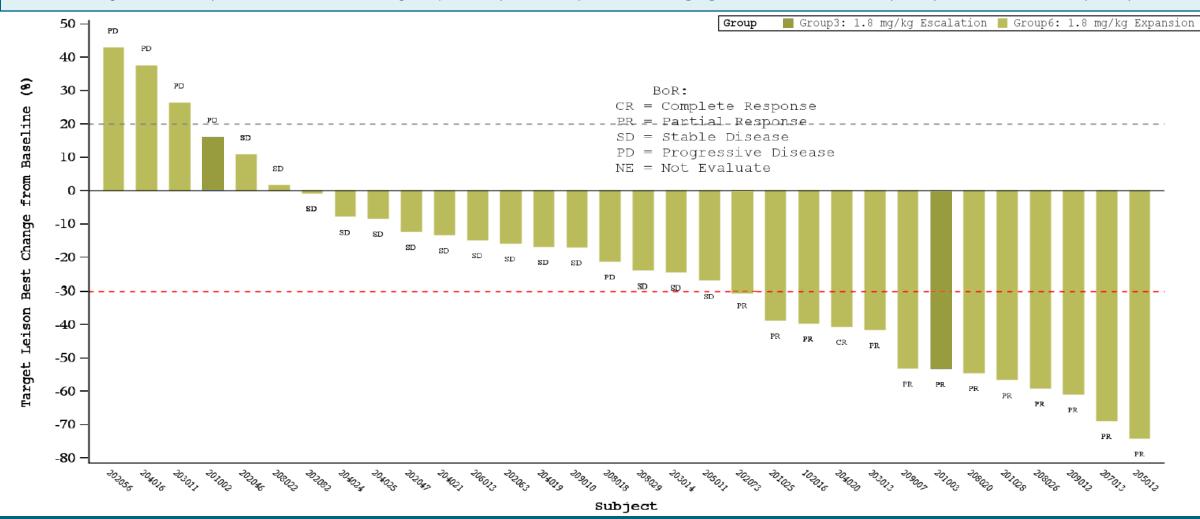
Approximately 120 subjects, depending on the number of cohorts to be expanded. CLDN18.2+ tumors only. No prior CLDN18.2 agents


ATG-022: Efficacy Across the Widest Patient Population in CLDN18.2+ Gastric Cancer Including From High to Ultra-low Expressors

CLDN18.2 Moderate to High Expressors (IHC 2+ > 20%; 2.4 mg/kg) – Waterfall Plot

Preliminary Efficacy in CLDN18.2+ Gastric Cancer (As of November 10, 2025):

■ IHC Staining - 2+, > 20% (CLDN18.2 Moderate to High Expressors): **Dose Expansion 2.4 mg/kg Cohort – ORR of 40%** (12/30) and **DCR of 90%** (27/30)


ATG-022: Efficacy Across the Widest Patient Population in CLDN18.2+ Gastric Cancer Including From High to Ultra-low Expressors

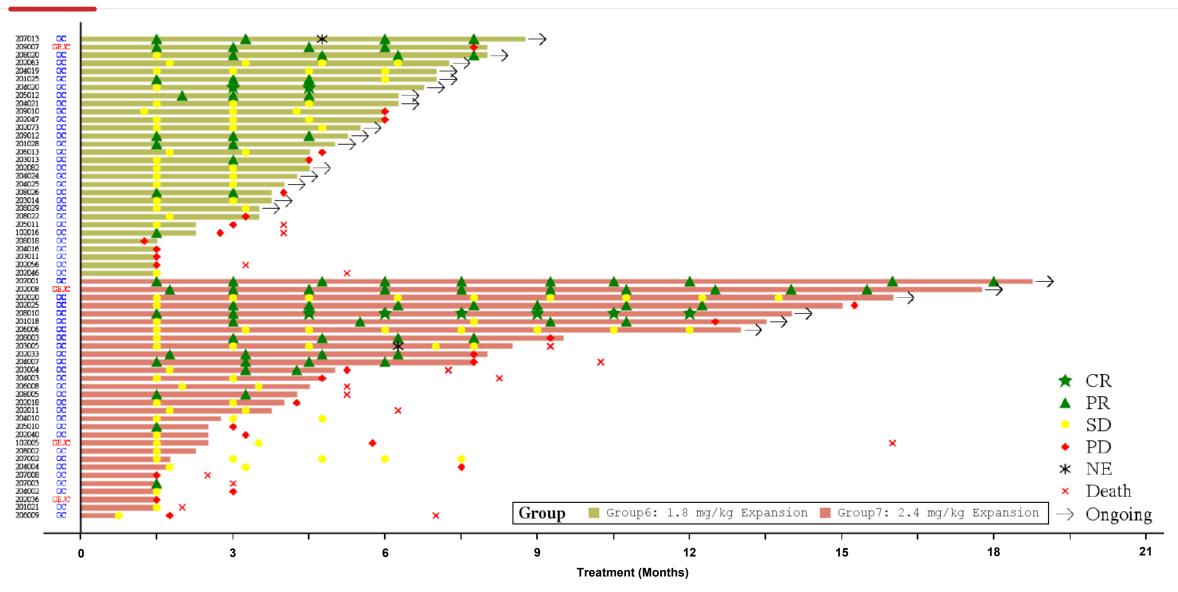
CLDN18.2 Moderate to High Expressors (IHC 2+ > 20%; 1.8 mg/kg) – Waterfall Plot

Preliminary Efficacy in CLDN18.2+ Gastric Cancer (As of November 10, 2025):

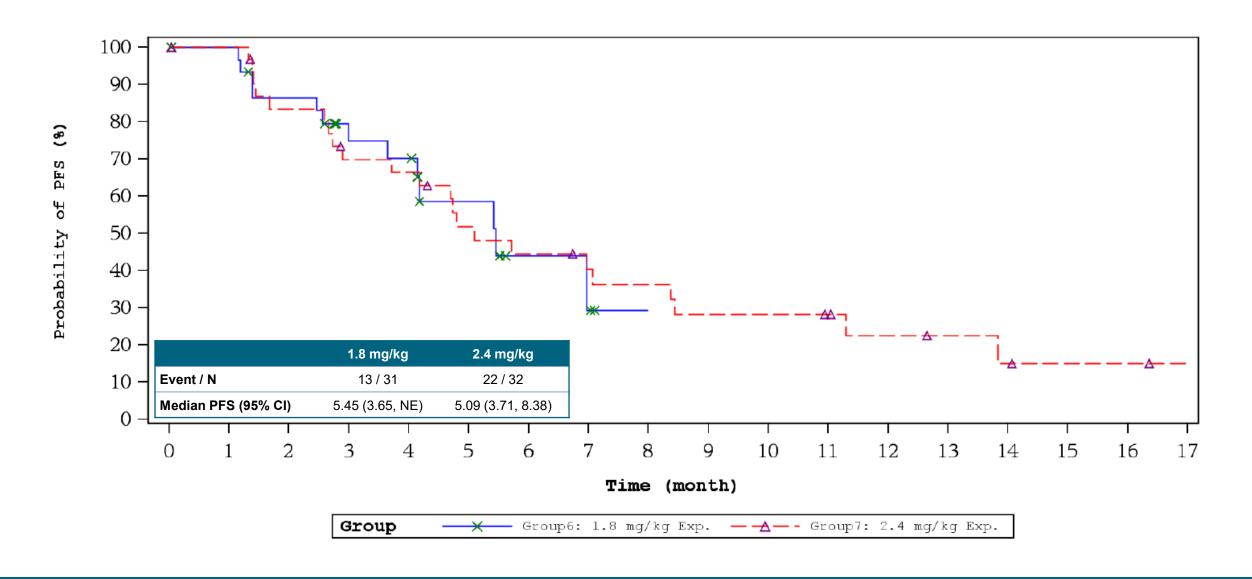
■ IHC Staining - 2+, > 20% (CLDN18.2 Moderate to High Expressors): **Dose Expansion 1.8 mg/kg Cohort – ORR of 40%** (12/30) and **DCR of 86.7%** (26/30)

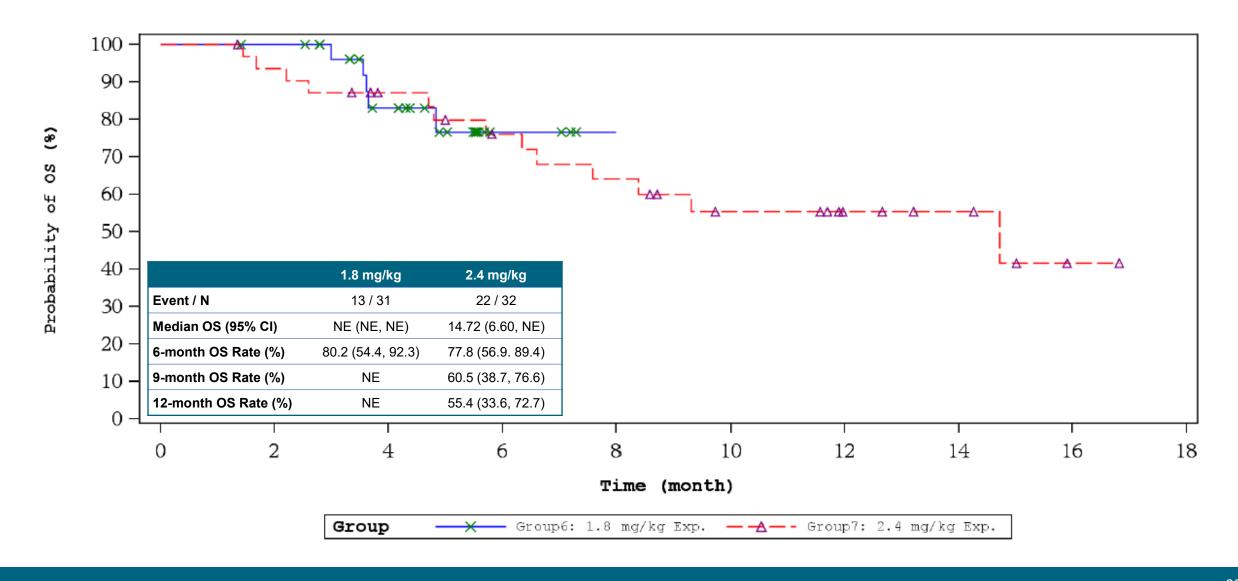

ATG-022: Efficacy Across the Widest Patient Population in CLDN18.2+ Gastric Cancer Including From High to Ultra-low Expressors

CLDN18.2 Low and Ultra-low Expressors (IHC 2+ ≤ 20%; 1.8 - 2.4mg/kg) – Waterfall Plot


Preliminary Efficacy in CLDN18.2+ Gastric Cancer (As of November 10, 2025):

■ IHC Staining - 2+, ≤ 20% (CLDN18.2 Low and Ultra-low Expressors): Efficacious Dose Range of 1.8 – 2.4 mg/kg – ORR of 28.6% (6/21) and DCR of 52.4% (11/21)


ATG-022: Durable Responses Demonstrated Across Both Dosage Levels


ATG-022: Encouraging Median PFS Outcomes in CLDN18.2+ (2+ > 20%) Gastric Cancer

ATG-022: Best-in-Class Median OS of 14.72 Months in CLDN18.2+ (2+ > 20%) Gastric Cancer

ATG-022: Favourable Safety Profile CLINCH (Phase I Dose Escalation & Phase II Dose Expansion) Safety Summary – TEAEs

			TEAEs				
n (%)	0.3mg/kg N=1	0.9mg/kg N=3	1.8mg/kg N=3	2.4mg/kg N=3	3.0mg/kg N=6	Expansion 1.8mg/kg N=31	Expansion 2.4mg/kg N=65
Subjects with at least one TEAE	1 (100)	3 (100)	3 (100)	3 (100)	6 (100)	30 (96.8)	65 (100)
Serious TEAE	1 (100)	0 (0)	1 (33.3)	2 (66.7)	5 (83.3)	6 (19.4)	30 (46.2)
Grade ≥ 3 TEAE	0 (0)	1 (33.3)	2 (66.7)	2 (66.7)	6 (100)	8 (25.8)	38 (58.5)
TEAE Leading to Dose Modification	0 (0)	1 (33.3)	1 (33.3)	1 (33.3)	5 (83.3)	6 (19.4)	34 (52.3)
TEAE Leading to Dose Reduction	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (3.2)	12 (18.5)
TEAE Leading to Dose Interruption	0 (0)	1 (33.3)	1 (33.3)	1 (33.3)	5 (83.3)	5 (16.1)	30 (46.2)
TEAE Leading to Drug Withdrawn	0 (0)	0 (0)	1 (33.3)	0 (0)	2 (33.3)	1 (3.2)	8 (12.3)
TEAE Leading to Death	0 (0)	0 (0)	1 (33.3)	1 (33.3)	2 (33.3)	1 (3.2)	12 (18.5)

ATG-022: Favourable Safety Profile CLINCH (Phase I Dose Escalation & Phase II Dose Expansion) Safety Summary – TRAEs

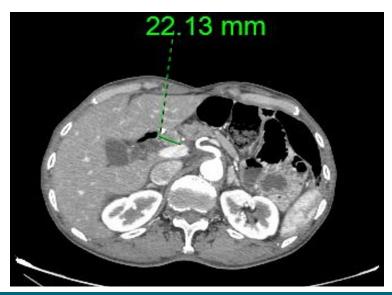
			TRAEs				
n (%)	0.3mg/kg N=1	0.9mg/kg N=3	1.8mg/kg N=3	2.4mg/kg N=3	3.0mg/kg N=6	Expansion 1.8mg/kg N=31	Expansion 2.4mg/kg N=65
Subjects with at least one TRAE	0 (0)	2 (66.7)	3 (100)	3 (100)	6 (100)	30 (96.8)	60 (92.3)
Serious TRAE	0 (0)	0 (0)	0 (0)	1 (33.3)	4 (66.7)	2 (6.5)	20 (30.8)
Grade ≥ 3 TRAE	0 (0)	1 (33.3)	1 (33.3)	1 (33.3)	6 (100)	5 (16.1)	33 (50.8)
TRAE Leading to Dose Modification	0 (0)	1 (33.3)	0 (0)	1 (33.3)	5 (83.3)	3 (9.7)	32 (49.2)
TRAE Leading to Dose Reduction	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (3.2)	12 (18.5)
TRAE Leading to Dose Interruption	0 (0)	1 (33.3)	0 (0)	1 (33.3)	5 (83.3)	2 (6.5)	28 (43.1)
TRAE Leading to Drug Withdrawn	0 (0)	0 (0)	1 (33.3)	0 (0)	2 (33.3)	0 (0)	3 (4.6)
TRAE Leading to Death	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (1.5)

ATG-022: No Ophthalmological Toxicities or Interstitial Lung Disease CLINCH – TRAE By Preferred Term (PT) in ≥ 10% Patients (1.8 & 2.4 mg/kg)

			TRAEs					
Adverse Events	Escalation (1.	8mg/kg) (N=3)	Expansion (1.8	8mg/kg) (N=31)	Escalation (2.	4mg/kg) (N=3)	Expansion (2.4	4mg/kg) (N=65)
Preferred Term; n (%)	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3
Any TRAE (n, %)	3 (100)	1 (33.3)	30 (96.8)	5 (16.1)	3 (100)	1 (33.3)	60 (92.3)	33 (50.8)
Neutrophil count decreased	0 (0)	0 (0)	10 (32.3)	2 (6.5)	2 (66.7)	1 (33.3)	33 (50.8)	9 (13.8)
Nausea	2 (66.7)	0 (0)	8 (25.8)	0 (0)	1 (33.3)	1 (33.3)	32 (49.2)	2 (3.1)
White blood cell count decreased	0 (0)	0 (0)	9 (29.0)	0 (0)	1 (33.3)	0 (0)	31 (47.7)	2 (3.1)
Decreased appetite	1 (33.3)	0 (0)	7 (22.6)	1 (3.2)	2 (66.7)	0 (0)	30 (46.2)	8 (12.3)
Anaemia	0 (0)	0 (0)	16 (51.6)	1 (3.2)	0 (0)	0 (0)	31 (47.7)	5 (7.7)
Weight decreased	1 (33.3)	0 (0)	11 (35.5)	0 (0)	0 (0)	0 (0)	29 (44.6)	4 (6.2)
Vomiting	1 (33.3)	0 (0)	4 (12.9)	0 (0)	1 (33.3)	1 (33.3)	25 (38.5)	1 (1.5)
Hypoalbuminaemia	1 (33.3)	0 (0)	12 (38.7)	0 (0)	1 (33.3)	1 (33.3)	20 (30.8)	0 (0)
Malaise	0 (0)	0 (0)	4 (12.9)	0 (0)	0 (0)	0 (0)	18 (27.7)	2 (3.1)
ALT increased	1 (33.3)	1 (33.3)	6 (19.4)	0 (0)	0 (0)	0 (0)	12 (18.5)	0 (0)
AST increased	0 (0)	0 (0)	7 (22.6)	0 (0)	0 (0)	0 (0)	12 (18.5)	1 (1.5)
Alopecia	0 (0)	0 (0)	0 (0)	0 (0)	1 (33.3)	0 (0)	10 (15.4)	0 (0)
Constipation	0 (0)	0 (0)	3 (9.7)	0 (0)	0 (0)	0 (0)	10 (15.4)	1 (1.5)
Fatigue	0 (0)	0 (0)	4 (12.9)	0 (0)	1 (33.3)	0 (0)	9 (13.8)	1 (1.5)
Hypokalaemia	0 (0)	0 (0)	0 (0)	0 (0)	1 (33.3)	0 (0)	8 (12.3)	2 (3.1)
Upper abdominal pain	1 (33.3)	0 (0)	3 (9.7)	1 (3.2)	0 (0)	0 (0)	10 (15.4)	0 (0)
Diarrhoea	0 (0)	0 (0)	2 (6.5)	0 (0)	1 (33.3)	0 (0)	7 (10.8)	0 (0)
Platelet count decreased	0 (0)	0 (0)	3 (9.7)	0 (0)	0 (0)	0 (0)	9 (13.8)	1 (1.5)
Blood bilirubin increased	0 (0)	0 (0)	2 (6.5)	0 (0)	0 (0)	0 (0)	7 (10.8)	1 (1.5)
Peripheral neuropathy	0 (0)	0 (0)	3 (9.7)	0 (0)	1 (33.3)	0 (0)	7 (10.8)	1 (1.5)

■ No ophthalmological toxicities or interstitial lung disease (ILD) have been observed

ATG-022 ("CLINCH" Study): Case Study of 71 y/o Male Gastric Cancer Patient Achieving Complete Response


	Summary of Patient
Patient	83 y/o, Male, Metastatic Gastric Cancer
Initial Diagnosis	July 25 th , 2022
CLDN18.2 Expression	1+ (15%), 2+ (50%), 3+ (0%)
Target Lesions (Baseline)	Liver Metastasis – 18 mm Hepatic Portal Metastasis – 22.13 mm Lymph Node – 19.9 mm
Treatment with ATG-022	2.4 mg/kg Q3W, C1D1 – October 14 th , 2024

Prior Systemic Anti-Cancer Therapy					
Regimen	Start Date	End Date			
Oxaliplatin + Capecitabine	August 2022	November 2022			
Lenvatinib + Paclitaxel + Envafolimab	April 2023	September 2023			
Apatinib	January 2024	March 2024			
Irinotecan	March 2024	June 2024			

Tumor Evaluation

Week 12	PR
Week 18	CR
Week 24	CR
Week 30	CR
Week 36	CR
Week 42	CR
Week 48	CR

<u>Hepatic Portal Metastasis – Baseline</u>

Hepatic Portal Metastasis – Week 18 (CR)

ATG-022 Outperforms Competitor Molecules with Unprecedented Efficacy Across Gastric Cancer of All CLDN18.2 Expression Levels

842,800+ CLDN18.2+ Gastric Cancer Patients are Diagnosed Globally Each Year

ATG-022

CLDN18.2 Moderate to High Expressors (IHC 2+ > 20%; 2.4 mg/kg): 40% ORR (12/30), 90% DCR (27/30), Median PFS of 5.09 months and Median OS of 14.72 months CLDN18.2 Moderate to High Expressors (IHC 2+ > 20%; 1.8 mg/kg): 40% ORR (12/30) and 86.7% DCR (26/30), and Median PFS of 5.45 months

CLDN18.2 Low and Ultra-low Expressors (IHC 2+ ≤ 20%; 1.8 - 2.4 mg/kg): 28.6% ORR (6/21) and 52.4% DCR (11/21)

ADC 1

IHC Staining - 2+ ≥ 20%

ADC₃

IHC Staining - 2+ ≥ 40%

ADC 2 and ADC 4

IHC Staining - 2+ ≥ 50%

Zolbetuximab

IHC Staining - 2+ ≥ 75%

High and Moderate Expression

Low and Ultra-low Expression

Claudin 18.2 Expression Level Target Patient Population – Gastric Cancer

ATG-022 Demonstrated Best-In-Class Efficacy and mOS Across Modalities

	ATG-0221 ANTENGENE	ADC 1	ADC 2	ADC 3	ADC 4	BsAb	Zolbetuximab **astellas	
Molecule Design	DAR 4 DAR 4 vc-MMAE Cleavable-MMAE		DAR 4 MMAE	TOP1i DAR 4	TOP1i DAR4	CLDN18.2 x 4-1BB Bispecific Antibody	Monoclonal Antibody	
Enrolment CLDN18.2 Threshold	IHC - 1+ ≥ 1% (Dose Expansion Cohorts)	IHC - 2+/3+ ≥ 20 %	IHC - 2+/3+ ≥ 50 %	IHC - 2+ ≥ 40 %	IHC - 2+/3+ ≥ 50 %	IHC - 1+ ≥ 1%	IHC - 2+/3+ ≥ 75%	
ORR	40% (12/30; 1.8 mg/kg; 2+ > 20%) 40% (12/30; 2.4 mg/kg; 2+ > 20%)	25.0% (1/4; 1.8 mg/kg) ² 46.9% (15/32; 2.2mg/kg) ² 22.2% (10/45; 2.6mg/kg) ²	28.9%	38.8% (19/49)	36.7% (11/30)	17.8% (8/45; 5 - 18 mg/kg; All Patients) ² 17.9% (7/39; 5 - 18 mg/kg; 2+ > 20%) ²	9% (Overall); 14% (CLDN18.2 High Patients)	
DCR	86.7% (26/30; 1.8 mg/kg; 2+ > 20%) 90% (27/30; 2.4 mg/kg; 2+ > 20%)	50.0% (2/4; 1.8 mg/kg) ² 68.8% (22/32; 2.2 mg/kg) ² 62.2% (28/45; 2.6mg/kg) ²	80.0%	87.8% (43/49)	93.3% (28/30)	48.9% (22/45; 5 - 18 mg/kg; All Patients) ² 48.7% (19/39; 5 - 18 mg/kg; 2+ > 20%) ²	23% (Overall); 31% (CLDN18.2 High Patients)	
Median PFS (95% CI)	5.45 months (3.65-NR; 1.8 mg/kg; 2+ > 20%)* 5.09 months (3.71-8.38; 2.4 mg/kg; 2+ > 20%)	4.8 months (3.6-6.2; 2.2 mg/kg) 3.3 months (2.2-6.1; 2.6 mg/kg)	4.9 months	5.5 months (4.1–7.0)	5.6 months (3.0–6.9)	3.0 months (1.7–3.9)	Not Reported	
Median OS (95% CI)	14.72 months (6.60-NE; 2.4 mg/kg; 2+ > 20%)*	11.8 months (6.5-NE; 2.2 mg/kg) 11.5 months (6.2-19.0; 2.6 mg/kg)	10 months	~10.8 months ³	Not Evaluable	7.5 months (5.0–12.5)	Not Reported	
Responses in IHC 2+ ≤ 20% Gastric Cancer Patients	≤ 20% 28.6% (6/21); 0% ORR at RP2D in Including 1 CR IHC 2+ <20% Patients		N/A	0% ORR in patients with CLDN18.2 expression below IHC 2+/3+ 40%	0% ORR in patients with CLDN18.2 expression below IHC 2+/3+ 50%	16.7% (1/6; 5 - 18 mg/kg; 2+ ≤ 20%)	Minimal single agent activity	

¹ Preliminary Data as of November 10, 2025; ² Confirmed ORR/DCR;

ATG-022 Demonstrated Best-In-Class Safety Profile with Potential to Transform 1L Gastric Cancer SoC in Combination with Anti-PD-1 and Chemotherapy

ATG-022 ¹ ADC 1		ADC 1	ADC 2 ADC 3		ADC 4	BsAb	Zolbetuximab **astellas**	
Molecule Design	DAR 4 vc-MMAE	DAR 4 Cleavable-MMAE	DAR 4 MMAE	TOP1i DAR 4	TOP1i DAR4	CLDN18.2 x 4-1BB Bispecific Antibody	Monoclonal Antibody	
Patient Sample of Safety Data	Dose Expansion: 1.8 mg/kg Q3W (N = 31)	Dose Expansion (N = 107)	Dose Expansion: 1.8 mg/kg Q2W (N = 85) Phase I: 6 mg/kg Q3W (N = 62)		Phase I: 6 mg/kg Q3W (N = 35)	Phase I (N = 45)	Phase IIa MONO Study (N = 54)	
		57.0%						
					48.6%			
			45.2%	41.9%				
						33.0%		
Grade ≥ 3 TRAE (%)								
	16.1%							
							NR	
_	ATG-022	ADC 1	ADC 2	ADC 3	ADC 4	BsAb	Zolbetuximab	

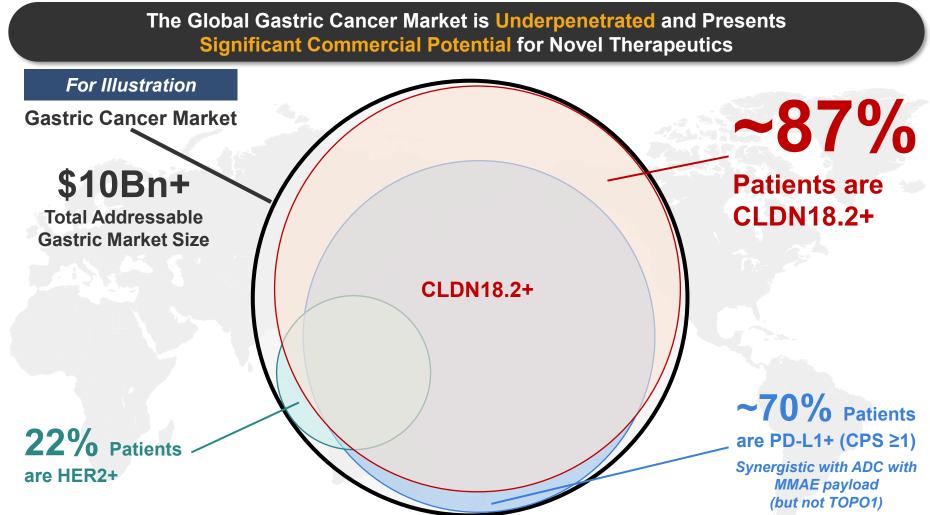
¹ Preliminary Data as of November 10, 2025; # TEAE is listed as statistics for TRAE is not reported

ATG-022 Demonstrated Best-In-Class Safety Profile with Potential to Transform 1L Gastric Cancer SoC in Combination with Anti-PD-1 and Chemotherapy

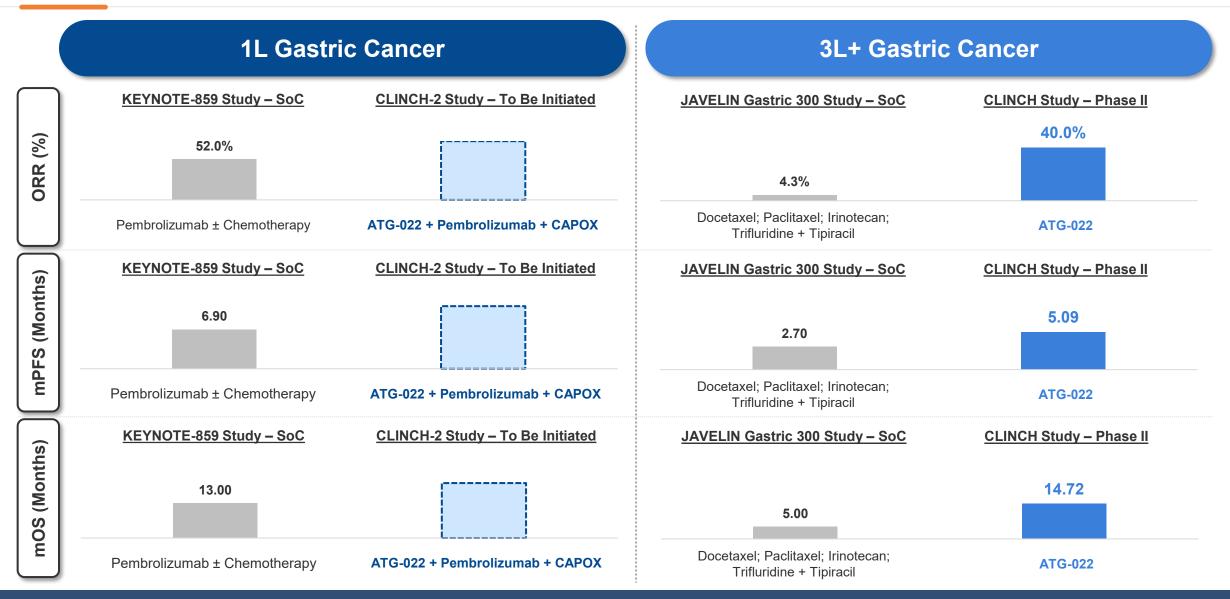
			ATG-022 ¹ ANTENGENE		ADC 1		ADC 2		ADC 3		ADC 4		BsAb		Zolbetuximab **astellas**	
Molecule Design Patient Sample of Safety Data		nple of Dose Expansion:		DAR 4 Cleavable-MMAE Dose Expansion (N = 107)		DAR 4 MMAE Dose Expansion: 1.8 mg/kg Q2W (N = 85)		TOP1i DAR 4 Phase I: 6 mg/kg Q3W (N = 62)		TOP1i DAR4 Phase I: 6 mg/kg Q3W (N = 35)		CLDN18.2 x 4-1BB Bispecific Antibody Phase I (N = 45)		Monoclonal Antibody Phase IIa MONO Study (N = 54)		
	Neutropenia	32.3%	13.8%	53.2%#	20.6%#	41.2%	14.1%	54.8%	22.6%	51.4%	20.0%	15.6%	4.4%	<10%#	NR	
	Nausea	25.8%	0%	57.0%#	3.7%#	27.1%	3.5%	43.5%	1.6%	65.7%	5.7%	20.0%	2.2%	63%#	15%#	
	Vomiting	12.9%	0%	56.1%#	10.3%#	28.2%	3.5%	27.4%	1.6%	51.4%	8.6%	11.1%	2.2%	57%#	22%#	
ety	ALT	19.4%	0%	29.0%#	0%	21.2%	1.2%	22.6%	6.5%	NR	NR	15.6%	2.2%	<10%#	NR	
Safety	AST	22.6%	0%	42.1%#	0%	25.9%	1.2%	24.2%	0%	8.6%	0%	15.6%	4.4%	<10%#	NR	
	GGT	3.2%	0%	14.0%#	1%#	NR	NR	NR	NR	NR	NR	11.1%	2.2%	<10%#	NR	
	CRS	0%	0%	NR	NR	NR	NR	NR	NR	NR	NR	2%	0%	<10%#	NR	
	Blurry Vision	0%	0%	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
	Peripheral Neuropathy	9.7%	0%	19.6%#	0%	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	

¹ Preliminary Data as of November 10, 2025; # TEAE is listed as statistics for TRAE is not reported

Antengene's Development Plans for ATG-022 (CLDN18.2 ADC)


Godfrey Guo, M.D.
Vice President, Clinical Development

Huge Unmet Medical Need and Market Opportunity Globally in Claudin 18.2 Positive Gastric Cancer


Source: GLOBOCAN; NCI SEER; Data Monitor Biomed Research; Allied Market Research; Research and Markets (Gastric Cancer Market (2024 Edition): Analysis By Indication (Gastric Cancer, Gastrointestinal Stromal Tumors), By Therapy, By Drug Class, By Region, By Country: Market Insights and Forecast (2020-2030); Cao W, Xing H, Li Y, et al. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res. 2022 May 31,10(1):38; Baek, J. H., Park, D. J., Kim, G. Y., Cheon, J., Kang, B. W., Cha, H. J., & Kim, J. G. (2019). Clinical Implications of Claudin18.2 Expression in Patients With Gastric Cancer. "Anticancer Research, 39"(12), 6973-6979.

https://doi.org/10.21873/anticanres.13919; Türeci O, Sahin U, Schulze-Bergkamen H, Zvirbule Z, Lordick F, Koeberle D, et al. A multicentre, phase Ila study of 20lbeturinab as a single agent in patients with necurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: the MONO study. Ann Oncol. 2019;30(9):1487-495; Van Cutsem E, Bang YJ, Feng-Van Cutsem E, Bang YJ, Feng-Van

https://doi.org/10.2187//anticanres.13919; Turect O, Sahim U, Schuizze-Bergkamen H, Auribule Z, Loridick F, Koeberle D, et al. A multicentre, phase lla study of zolbetuximab as a single agent in partients with recurrent or retractory advanced adenocaercinoma of the recurrent or retractory advanced agent or sopraegus: the MONO study. Ann Oncol. 2019;30(9):1487–1495; Van Cutsem L, Koeberle D, et al. A multicentre, phase lla study of zolbetuximab as a single agent in partient or gastroesophagus: the MONO study. Ann Oncol. 2019;30(9):1487–1495; Van Cutsem L, Koeberle D, et al. A multicentre, phase lla study of zolbetuximab as a single agent in partient or study of zolbetuximab as a single agent in partient or study of zolbetuximab as a single agent in partient or study of zolbetuximab as a single agent in partients with retractory advanced adenocaercinoma of the retractory advanced adenocaercinoma of the returnet or retractory advanced adenocaercinoma of the retractory advanced advanced

ATG-022: Improving Outcomes Where the Current Standard of Care Has Significant Room for Improvement

Next Steps: Value Inflection Through Pivotal Phase III in 3L+ Gastric Cancer, Combo Development in 1L and Proof of Concept in Other Tumor Types

Pivotal Phase III

3L+ CLDN18.2+ Gastric Cancer

ATG-022 vs. Physician's Choice of Chemotherapy (Irinotecan / Paclitaxel / Docetaxel)

- HER-2 Negative and CLDN18.2 Moderate to High Expression (IHC 2+ > 20%) Advanced / Metastatic Gastric Cancer with At Least 2 Prior Lines of Therapy
- ✓ Primary Objectives: OS and PFS
- ✓ Secondary Objectives: ORR, DCR, DOR, Safety, ADA

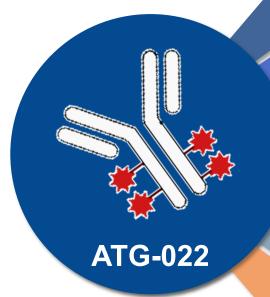
Phase II

1L CLDN18.2+, PD-L1+ Gastric Cancer

ATG-022 + Pembrolizumab + CAPOX

- ✓ HER-2 Negative and CLDN18.2 Positive (IHC 1+ ≥ 1%) Advanced / Metastatic Gastric Cancer with No Prior Systemic Therapy
- ✓ Primary Objectives: ORR
- ✓ Secondary Objectives: PFS, DOR, OS, Safety

Phase II


Other Non-Gastric Tumor Types

ATG-022 Monotherapy

- ✓ Proof of Concept Achieved in a Certain Subtype of Gynecological Tumor: All 7 Patients Who Have Undergone At Least One Efficacy Evaluation Demonstrated Tumor Shrinkage
- ✓ 20~30 Subjects in Each Tumor Type / Cohort

ATG-022: Strong Clinical and Strategic Positioning in 1L–3L+ Gastric Cancer with Expansion Potential Across Indications – Targeting Over US\$5 Billion in Peak Sales

1L CLDN18.2+ (IHC 1+ ≥ 1%), PD-L1+ (CPS ≥ 1%) Gastric Cancer

ATG-022 + Pembrolizumab + Chemotherapy (CAPOX / FOLFOX)

2L CLDN18.2+ (IHC 1+ ≥ 1%), PD-L1+ (CPS ≥ 1%) Gastric Cancer

ATG-022 + Pembrolizumab

3L+ CLDN18.2+ (IHC 2+ > 20%) Gastric Cancer

ATG-022 Monotherapy

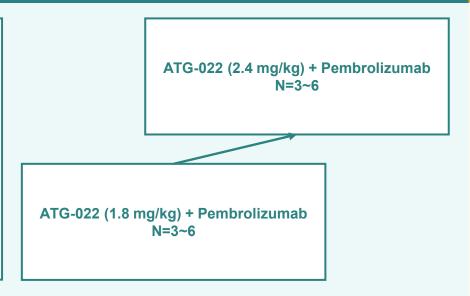
3L+ CLDN18.2+ (IHC 2+ ≤ 20%) Gastric Cancer

ATG-022 Monotherapy

Basket Trial – Other CLDN18.2+ Tumors

Proof of Concept Achieved in a Certain Subtype of Gynecological Tumor: All 7 Patients Who Have Undergone At Least One Efficacy Evaluation Demonstrated Tumor Shrinkage

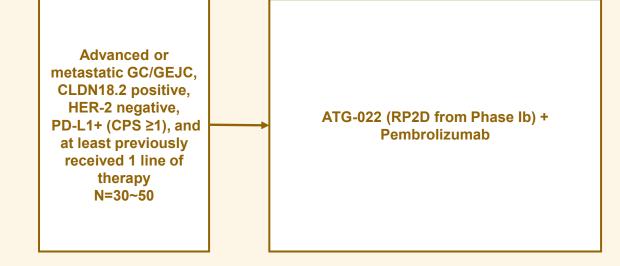
US\$5+ Billion Peak Sales Potential (Not Including Potential in Other CLDN18.2+ Tumors)


Phase Ib/II study Design of ATG-022 In Combination with Pembrolizumab in Advanced/Metastatic Claudin 18.2 Positive Gastric Cancer (2L+)

Multi-center, Open Label, Phase Ib/II Study in Advanced/Metastatic Claudin 18.2 Positive GC/GEJC

Phase Ib: Dose Confirmation

Subjects with Advanced or metastatic GC/GEJC, CLDN18.2 positive, HER-2 negative, PD-L1+ (CPS ≥1), and at least previously received 1 line of therapy


Primary Objectives:

Safety, tolerability of ATG-022 + pembrolizumab combination therapy. RP2D definition

Secondary Objectives:

Evaluate preliminary efficacy, characterize pharmacology (PK/PDx profile)

Phase II: Efficacy Expansion

Primary Objectives:

ORR

Secondary Objectives:

PFS, DOR, OS, Safety

Phase Ib/II study Design of ATG-022 In Combination with Pembrolizumab and CAPOX in Advanced/Metastatic Claudin 18.2 Positive Gastric Cancer (1L)

Multi-center, Open Label, Phase Ib/II Study in Advanced/Metastatic Claudin 18.2 Positive GC/GEJC

Phase Ib: Dose Confirmation

Subjects with
Advanced or
metastatic
GC/GEJC,
CLDN18.2
positive, HER-2
negative,
PD-L1+
(CPS ≥1), and
no prior
systemic
treatment

ATG-022 (2.4 mg/kg) +
Pembrolizumab + CAPOX*
N=3~6

ATG-022 (1.8 mg/kg) + Pembrolizumab + CAPOX* N=3~6

Primary Objectives:

Safety, tolerability of ATG-022 + pembrolizumab + CAPOX combination therapy. RP2D definition

Secondary Objectives:

Evaluate preliminary efficacy, characterize pharmacology (PK/PDx profile)

Phase II: Efficacy Expansion

Advanced or metastatic GC/GEJC, CLDN18.2 positive, HER-2 negative, PD-L1+ (CPS ≥1), and no prior systemic treatment N=~50

ATG-022 (RP2D from Phase lb) + Pembrolizumab + CAPOX

Primary Objectives:

ORR

Secondary Objectives:

PFS, DOR, OS, Safety

^{*} CAPOX will be used by standard dose, or light intensity upon SRC's decision

ATG-022 Reshapes CLDN18.2 as a Pan-Tumor Target and Delivers a Best-in-Class Safety Profile to Transform 1L Treatment in Gastric Cancer via Anti-PD-1 and Chemo Combination

Efficacy Significance

Unlocking a Pan-Tumor CLDN18.2 Opportunity

- ✓ Meaningful activity in low expressors, confirming expansion potential into tumors with minimal CLDN18.2 expression
- ✓ Clear path into additional tumor types where CLDN18.2 levels are far lower than in gastric cancer
 - PoC demonstrated in a gynecologic tumor subtype (tumor shrinkage observed in all evaluable patients)
- ✓ Enables an all-comers 1L strategy with pembrolizumab + CAPOX across all CLDN18.2 expression levels

Safety Significance

ATG-022 as the Only ADC Viable for 1L Combo Therapy with Chemotherapy and Anti-PD-1

- ✓ Only 16.1% Grade ≥ 3 TRAEs, far below competing CLDN18.2 programs (40–60%)
- ✓ Best-in-class safety profile supporting ATG-022 as the only ADC viable for 1L combination with both chemotherapy and anti–PD-1 therapy

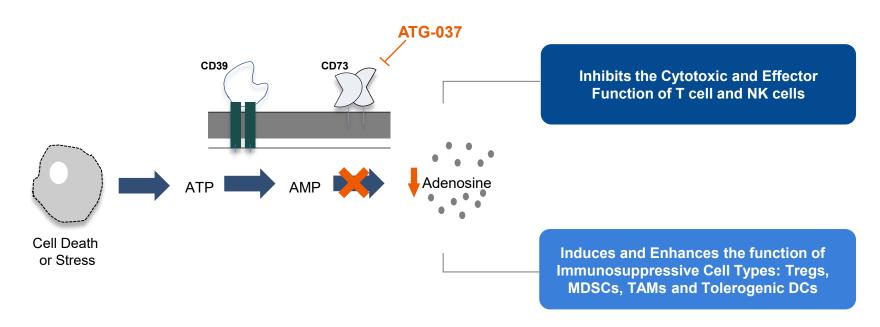
Q&A Session

Clinical Program Highlights and Development Plans

ATG-037 (Oral CD73 Inhibitor) and ATG-101 (PD-L1 x 4-1BB BsAb)

Godfrey Guo, M.D.
Vice President, Clinical Development

ATG-037: Potentially Best-in-Class CD73 Oral Small Molecule Inhibitor

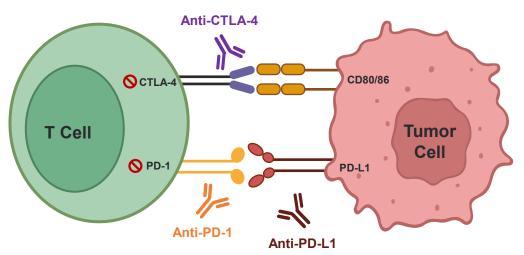


CD73

- Cell surface receptor
- Overexpression on tumor cells interrupts adenosine processing, enabling an immunosuppressive TME
- Important in a range of solid tumor cancers,
 e.g., melanoma and nonsmall cell lung cancer

ATG-037 Reverses Adenosine Mediated Immunosuppression

- Potent and selective, oral small molecule inhibitor completely blocks CD73 activity
- > Activity: Overcomes the hook effect with higher tissue penetrance v. anti-CD73 antibodies
- Specificity: No inhibition of related targets (including CD39)
- Preclinical Efficacy: Potent tumor growth inhibition as mono or combo therapy


Immune Checkpoint Inhibitor Market: Rapid Growth Across Multiple Cancers

Immune Checkpoint Inhibitors (ICIs) Targets

Global ICIs Market Size Expected to Reach \$150+ Billion by 2030

Broad Applicability of ICIs in Oncology Treatment

Lung Cancer

Gastric Cancer

Kidney Cancer

Many Other Cancers

514,000+

cancer patients in the US with exposure to Immuno-oncology treatment

3 Million+

cancer patients globally with exposure to Immuno-oncology treatment

Source: GLOBALCAN, Global Data, Research and Markets, publications & primary research;

Melanoma

ATG-037 Can Address the Huge Unmet Medical Need of Melanoma Patients who Progress on Immune Checkpoint Inhibitors

Immune Checkpoint Inhibitors (ICIs) are Standard of Care Therapies of Advanced Melanoma (Unresectable)

Checkpoint Inhibitors

Standard of Care for Most Patients

- ✓ Anti-PD-1 (pembrolizumab / nivolumab)
- ✓ Anti-CTLA-4 (ipilimumab)
- ✓ **Combination** of Anti-PD-1 and Anti-CTLA-4 /
 Anti-LAG-3

Targeted Therapies

Standard of Care
Only for BRAF V600Mutant Melanoma

✓ BRAF/MEK Inhibitors (dabrafenib + trametinib / vemurafenib + cobimetinib / encorafenib + binimetinib)

Other Therapies

Limited Usage

- ✓ Oncolytic Virus (Talimogene laherparepvec)
- √ High dose Interleukin-2 (rarely used today)

Significant Medical Needs of Melanoma in the US Especially in Patients Who Progress on ICIs

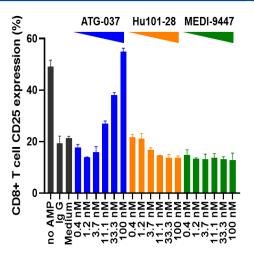
104,960

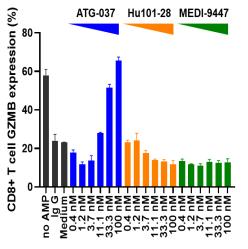
New Cases of Melanoma Per Year

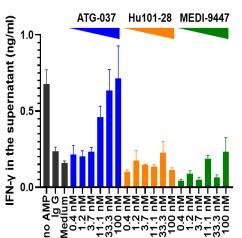
1,504,676

US Patients Livingwith Melanoma

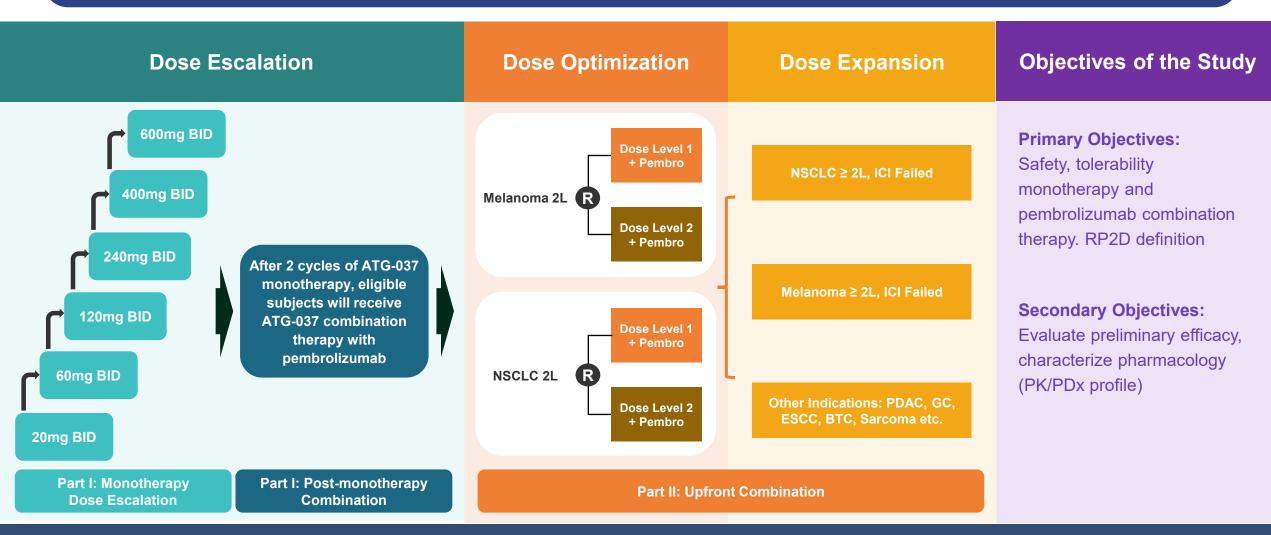
#5 Cancer in the US


(By Incidence)


ATG-037 Showed Strong CD73 Inhibition and Activity in Reversing T Cell Inhibition

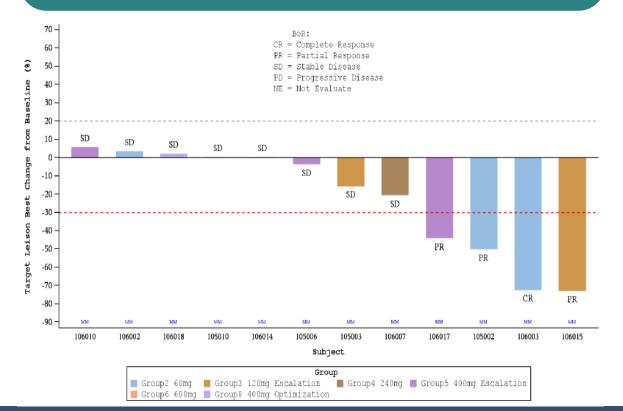


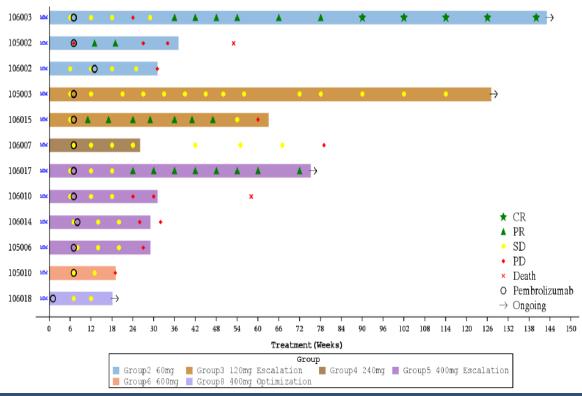
Complete CD73 inhibition at 0.4nM with Superior Activity in Reversing T Cell Inhibition



ATG-037 "STAMINA" Clinical Trial Design

Phase I/II, Multi-center, Open Label, Dose-finding Study Ongoing in Australia and China (NCT05205109)


ATG-037 In Combination with Pembrolizumab Demonstrated Encouraging Efficacy Signals in CPI Resistant Melanoma

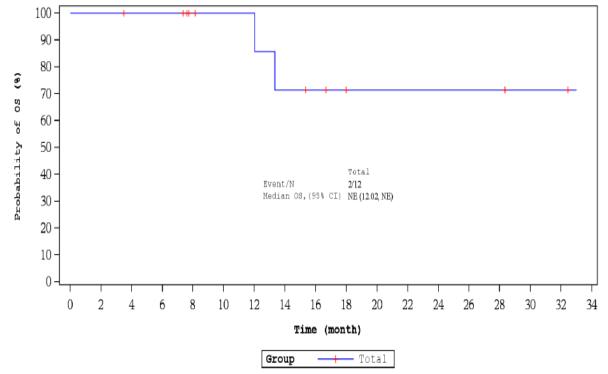

Preliminary Data for ATG-037 In Combination with Pembrolizumab (As of October 24, 2025)

- A total of 12 CPI-resistant melanoma patients received the combination therapy and were efficacy evaluable
 - 1 confirmed CR and 3 confirmed PRs, with the rest achieving SD ORR 33.3% (4/12) and DCR 100% (12/12)
 - o Durable benefit observed: the CR patient remains on therapy with over 34-month ongoing response and without safety concern

CPI-resistant Melanoma – Waterfall Plot

CPI-resistant Melanoma – Swimmer Plot

ATG-037 In Combination with Pembrolizumab Showed Promising Survival Benefits in CPI Resistant Melanoma

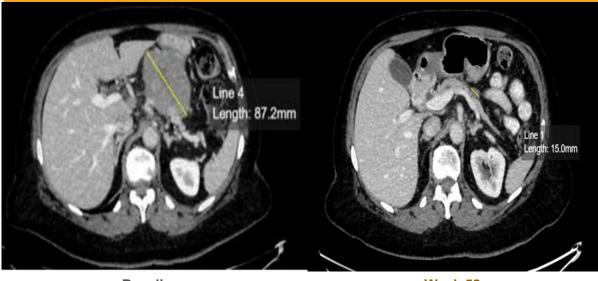

Preliminary Data for ATG-037 In Combination with Pembrolizumab (As of October 24, 2025)

- The median PFS is 4.63 months (95% CI: 3.95-16.56)
- The median OS has not been reached

CPI-resistant Melanoma – Progression Free Survival Kaplan-Meier Curve

CPI-resistant Melanoma – Overall Survival Kaplan-Meier Curve

ATG-037 + Pembrolizumab: Case Study of 73 y/o Female Melanoma Patient Achieving Confirmed Partial Response



Summary of Patient				
Patient	73 y/o, Female, Metastatic Melanoma (mucosal)			
Initial Diagnosis	May 3 rd , 2017; T4N0Mx			
ECOG PS	1			
PD-L1/CD73 Expression	PD-L1 (22C3): TPS NA; ICs NA; CD73: CD73+ Tumor cell NA; TAICs NA			
Target Lesion	Pancreas 87mm			
STAMINA Study Treatment	ATG-037 120 mg BID, C1D1 - May 2 nd , 2024; Pembrolizumab 200 mg Q3W, dosed from Cycle 3 (Jun 13 th , 2024)			

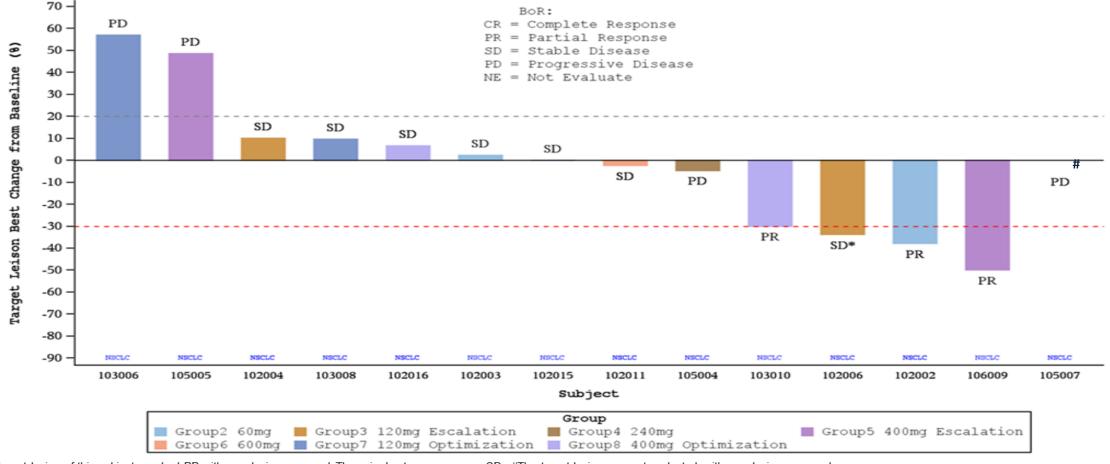
Prior Systemic Anti-Cancer Therapy

Regimen	Start Date	End Date	Best Response	Discontinue Reason
Nivolumab + RELATLIMAB/ PLACEBO	Oct 15 th , 2020	Jun 24, 2022	NA	Disease progression
NEMVALEUKIN 2025 ASCO Poster#3123	Nov 14 th , 2021	Feb 10, 2023	Stable Disease	Withdrew

Tumor Evaluation – Target Lesion Change from Baseline

Baseline Week 52

Safety Profile


TEAE	NCI CTCAE Grade	Relationship to ATG-037	Action Taken with ATG-037
Rash	Grade 1	Related	Dose Not Changed
Postural hypotension	Grade 1	Unrelated	Dose Not Changed
Bronchitis	Grade 2	Unrelated	Dose Not Changed
Right arm thrombophlebitis	Grade 2	Unrelated	Dose Not Changed
Cerebrovascular ischaemia	Grade 1	Unrelated	Dose Not Changed

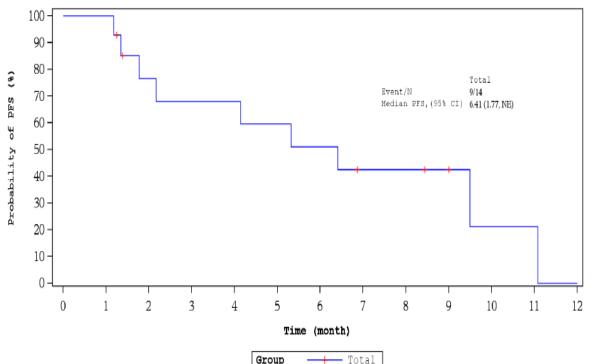
ATG-037 In Combination with Pembrolizumab Demonstrated Encouraging Efficacy Signals in CPI Resistant Non-small Cell Lung Cancer – Waterfall Plot

Preliminary Data for ATG-037 In Combination with Pembrolizumab (As of October 24, 2025)

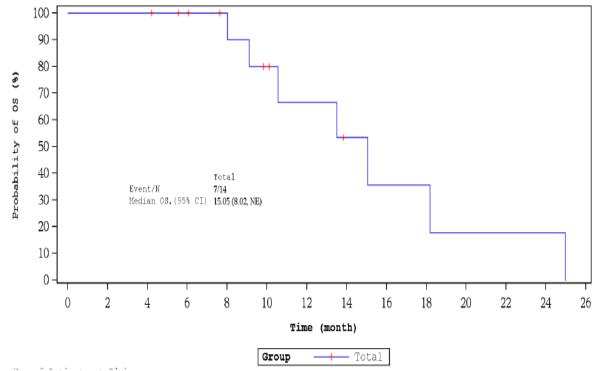
- A total of 14 CPI-resistant non-small cell lung cancer patients received the combination therapy and were efficacy evaluable
 - o 3 PRs and 7 SDs ORR 21.4% (3/14) and DCR 71.4% (10/14)

^{*}The target lesion of this subject reached PR with new lesion occurred. The prior best response was SD. #The target lesion was not evaluated with new lesion occurred

ATG-037 In Combination with Pembrolizumab Showed Promising Survival Benefits in CPI Resistant Non-small Cell Lung Cancer (NSCLC)



Preliminary Data for ATG-037 In Combination with Pembrolizumab (As of October 24, 2025)


- The median PFS is 6.41 months (95% CI: 1.77-NE)
- The median OS is 15.05 months (95% CI: 8.02-NE)

w- -f n-+1---- -- n1-1-

CPI-resistant NSCLC – Progression Free Survival Kaplan-Meier Curve

CPI-resistant NSCLC - Progression Free Survival Kaplan-Meier Curve

ATG-037 In Combination with Pembrolizumab: Excellent Safety Profile

Preliminary Data for ATG-037 In Combination with Pembrolizumab (As of October 24, 2025)

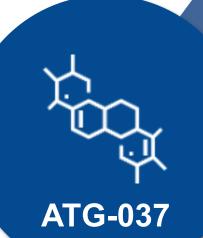
- While on combination therapy, 23/38 (60.5%) patients reported TRAEs
- The majority of TRAEs were grades 1-2; 7.9% (3/38) were reported as grade 3. No grade 4 or 5 TRAEs
- Only 2 serious TRAEs (grade 3 diarrhea; grade 3 immune mediated hepatitis) were reported

TRAEs of Combination Therapy To	reated Population
n (%)	N=38
Subjects with at least one TRAE	23 (60.5)
Serious TRAE	2 (5.3)
Grade ≥ 3 TRAE	3 (7.9)
TRAE Leading to Dose Modification	8 (21.1)
TRAE Leading to Dose Reduction	0 (0)
TRAE Leading to Dose Interruption	8 (21.1)
TRAE Leading to Drug Withdrawn	3 (7.9)
TRAE Leading to Death	0 (0)

ATG-037: Strong Clinical and Strategic Positioning in CPI-Resistant and 1L Melanoma with Expansion Potential in Other Tumors

ATG-037 + Pembrolizumab

1L Unresectable or Metastatic Melanoma


ATG-037 + Pembrolizumab

CPI-Resistant Unresectable or Metastatic Non-small Cell Lung Cancer (2L)

ATG-037 + Pembrolizumab

Other CPI-Resistant Tumor Types – PoC Achieved in Melanoma and NSCLC

Combo with Next Generation CPIs (e.g., PD-1 x VEGF)

ATG-101 (Xirestomig): Potentially Best-in-class PD-L1 x 4-1BB Bispecific Antibody with PD-L1-Gating Offers Better Safety and Potential to Overcome PD-(L)1 Resistance

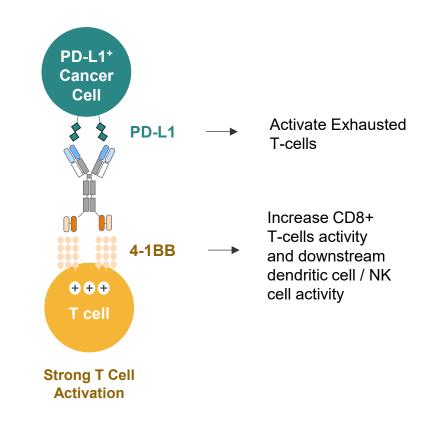
How can ATG-101 Overcome PD-(L)1 Resistance?

Add a T Cell Booster

By combining with a 4-1BB agonist

Maximize PD-L1 Binding

ATG-101's PD-L1/4-1BB arm affinity ratio of 65 ensures high PD-L1 receptor occupancy


Creating an "On-switch"

By using a bi-specific antibody to create a "trimer-induced-on-switch" to reduce 4-1BB driven liver tox

To Render Tumors "Hot"

By increase CD8+ T-cell activity and downstream dendritic cell and NK cell activity

Complementary Mechanism of PD-L1 x 4-1BB to render "Cold" tumors "Hot"

ATG-101: Targeting "Cold", "Hot", and CPI-Resistant / Relapsed Tumors with Strong Combination Potential

Tumor Targeting Strategy

- ✓ Focus on "cold" tumor types including extrapulmonary neuroendocrine carcinoma (EP-NEC), with a study initiation planned soon
- ✓ Explore the potential of immunogenic ("hot") tumor types such as NSCLC and melanoma
- Target patient population who have received prior anti-PD-1 therapy and subsequently developed resistance or relapsed

Developed In Combo with Other Anti-tumor Therapies

- ✓ Ongoing trials in Australia (Q3W), the US (Q3W), and China (Q2W / Q4W) consistently show a **favourable safety profile**
- ✓ ATG-101 demonstrates superior safety profile vs. competitor programs, with no liver toxicity observed, supporting its use as a strong combination partner

Break

Bing Hou, Ph.D.

Vice President, Head of Discovery Science & Translational Medicine

Antibody Drug Conjugates (ADCs)

ATG-022 (CLDN18.2) CLDN18.2+ Gastric Cancer (GC)

Phase II and Other Solid Tumors

CLDN18.2 ADC with Efficacy Across the Widest Patient Population; BTD in GC

ATG-125 (B7-H3 x PD-L1)
Pre-clinical

Solid Tumors

IO+ADC in One Drug

CD24

Pre-clinical Solid Tumors

IO+ADC in One Drug

Immuno-Oncology (IO)

ATG-037 (CD73)

CPI-resistant Melanoma and Non-small Cell Lung Cancer

Oral Bioavailable; Demonstrated Efficacy in CPI-resistant Patients

ATG-101 (PD-L1 x 4-1BB)

Phase I

Solid Tumors

No Liver Toxicity

ATG-031 (CD24) Phase I

Solid Tumors

First-in-class Myeloid Regulator

Autoimmune Diseases

ATG-201 (CD19 x CD3)
IND-enabling

B Cell Driven Autoimmune Diseases

Deep B Cell Depletion with Low CRS

ATG-207 (Undisclosed Bifunctional Biologics) Discovery

T Cell Driven Autoimmune Diseases

First-in-Class; Induces T_{req} and T Cell Exhaustion

T Cell Engagers (TCEs) B Cell Driven Autoimmune ATG-201 (CD19 x CD3) Deep B Cell Depletion with Low CRS IND-enabling Diseases ATG-106 (CDH6 x CD3) Ovarian Cancer and First-in-Class CDH6 TCE Pre-clinical Kidney Cancer ATG-112 (ALPPL2 x CD3) Gynecological Tumors and First-in-Class ALPPL2 TCE Pre-clinical Lung Cancer ATG-110 (LY6G6D x CD3) Microsatellite Stable (MSS) For IO-resistant Colorectal Cancer Pre-clinical Colorectal Cancer ATG-021 (GPRC5D x CD3) Multiple Myeloma Pre-clinical ATG-102 (LILRB4 x CD3) Acute Myeloid Leukemia and **Biparatopic** Chronic Myelomonocytic Leukemia Pre-clinical ATG-107 (FLT3 x CD3) Acute Myeloid Leukemia Pre-clinical ATG-115 (Undisclosed Liver Cancer **Bispecific TCE)** Novel TAA Discovered by Al Pre-clinical **Undisclosed Trispecific TCE** Metastatic Castration-resistant First-in-Class Discovery **Prostate Cancer Undisclosed Trispecific TCE** Small Cell Lung Cancer and First-in-Class Neuroendocrine Tumors Discovery

Antibody Drug Conjugates (ADCs)

ATG-022 (CLDN18.2) CLDN18.2+ Gastric Cancer (GC)

Phase II and Other Solid Tumors

CLDN18.2 ADC with Efficacy Across the Widest Patient Population; BTD in GC

ATG-125 (B7-H3 x PD-L1)
Pre-clinical

Solid Tumors

IO+ADC in One Drug

CD24

Pre-clinical Solid Tumors

IO+ADC in One Drug

Immuno-Oncology (IO)

ATG-037 (CD73) CPI-resistant Melanoma and Phase Ib/II Non-small Cell Lung Cancer

Oral Bioavailable; Demonstrated Efficacy in CPI-resistant Patients

ATG-101 (PD-L1 x 4-1BB)

Phase I

Solid Tumors

No Liver Toxicity

ATG-031 (CD24)
Phase I

Solid Tumors

First-in-class Myeloid Regulator

Autoimmune Diseases

ATG-201 (CD19 x CD3) IND-enabling

B Cell Driven Autoimmune Diseases

Deep B Cell Depletion with Low CRS

ATG-207 (Undisclosed Bifunctional Biologics)

Discovery

T Cell Driven Autoimmune Diseases

 $\label{eq:First-in-Class} First-in-Class; \\ Induces \, T_{reg} \, and \, T \, Cell \, Exhaustion$

T Cell Engagers (TCEs) B Cell Driven Autoimmune ATG-201 (CD19 x CD3) Deep B Cell Depletion with Low CRS IND-enabling Diseases ATG-106 (CDH6 x CD3) Ovarian Cancer and First-in-Class CDH6 TCE Pre-clinical Kidney Cancer Gynecological Tumors and ATG-112 (ALPPL2 x CD3) First-in-Class ALPPL2 TCE Pre-clinical Lung Cancer ATG-110 (LY6G6D x CD3) Microsatellite Stable (MSS) For IO-resistant Colorectal Cancer Colorectal Cancer Pre-clinical ATG-021 (GPRC5D x CD3) Multiple Myeloma Pre-clinical ATG-102 (LILRB4 x CD3) Acute Myeloid Leukemia and **Biparatopic** Chronic Myelomonocytic Leukemia Pre-clinical ATG-107 (FLT3 x CD3) Acute Myeloid Leukemia Pre-clinical ATG-115 (Undisclosed Bispecific TCE) Liver Cancer Novel TAA Discovered by Al Pre-clinical **Undisclosed Trispecific TCE** Metastatic Castration-resistant First-in-Class Discovery **Prostate Cancer Undisclosed Trispecific TCE** Small Cell Lung Cancer and First-in-Class Neuroendocrine Tumors Discovery

ADC + IO Combinations: Shaping the Future of Cancer Therapy

Growing Adoption and Proven Efficacy Highlight Their Transformative Potential and Set the Stage for the **Development of Next-generation Assets**

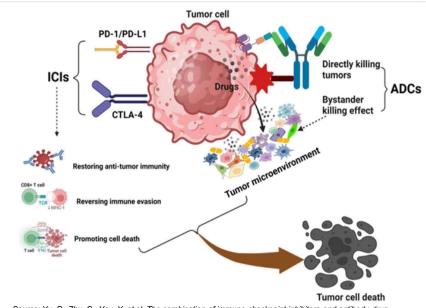
Mechanistic Synergy

ADCs deliver targeted cytotoxicity, while IO amplifies immune activation for stronger anti-tumor effects

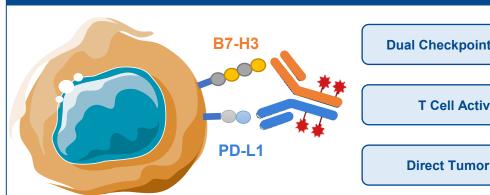
Growing Adoption of ADC + IO **Combinations**

Overcoming Resistance and Tumor Heterogeneity

Combination converts "cold" tumors to "hot" and helps bypass resistance to either therapy alone


Durable Immune Memory and Durable Responses

IO sustains and extends ADC-driven tumor shrinkage by enabling long-term immune surveillance


Increasing Clinical and Regulatory Momentum

Rising trial activity and early successes are driving rapid adoption and investment in ADC+IO combos

Source: Yu, P., Zhu, C., You, X. et al. The combination of immune checkpoint inhibitors and antibody-drug conjugates in the treatment of urogenital tumors: a review insights from phase 2 and 3 studies. Cell Death Dis 15, 433 (2024). https://doi.org/10.1038/s41419-024-06837-w

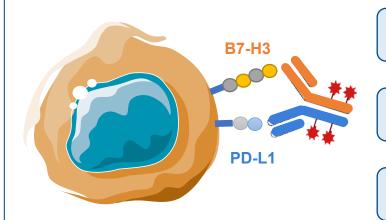
B7-H3 x PD-L1 Bispecific ADC – Preclinical Stage

Dual Checkpoint Blockade

T Cell Activation

Direct Tumor Killing

CD24 ADC – Preclinical Stage Tumor Associated Macrophage M1-like Myeloid Checkpoint Blockade Phagocytosis Induction CD24 Direct Tumor Killing

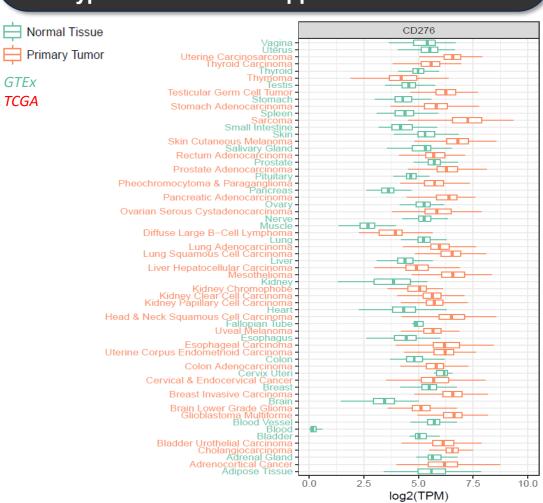

ATG-125

B7-H3 x PD-L1 Bispecific ADC

ATG-125: A Novel B7H3 x PD-L1 Bispecific ADC

B7-H3 x PD-L1 Bispecific ADC

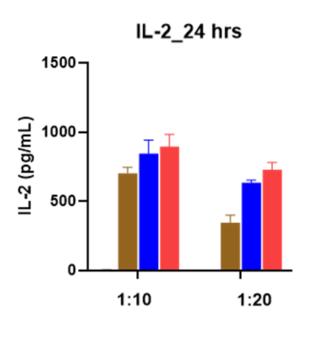
Dual Checkpoint Blockade

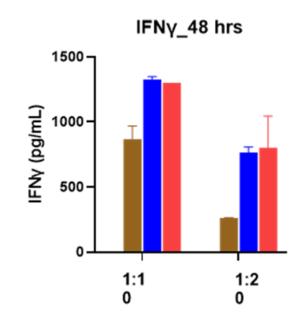

GTEx **TCGA**

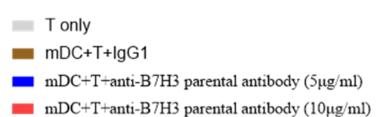
T Cell Activation

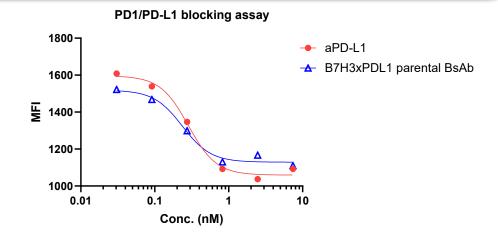
Direct Tumor Killing

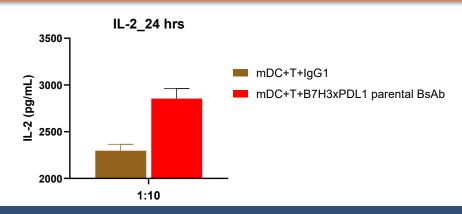
- Designed to inhibit the interaction of B7-H3 and PD-L1 to their receptors, respectively, inducing anti-tumor immunity
- Payload induces direct tumor killing
- B7H3 x PD-L1 bispecific antibody demonstrated potent in vivo efficacy and immunological memory
- ATG-125 demonstrated enhanced in vivo efficacy compared to B7H3-ADC or PDL1-ADC
- The IND is planned for Q1 2027


B7-H3 is a TAA Over-expressed in Multiple Tumor **Types with Immunosuppressive Function**

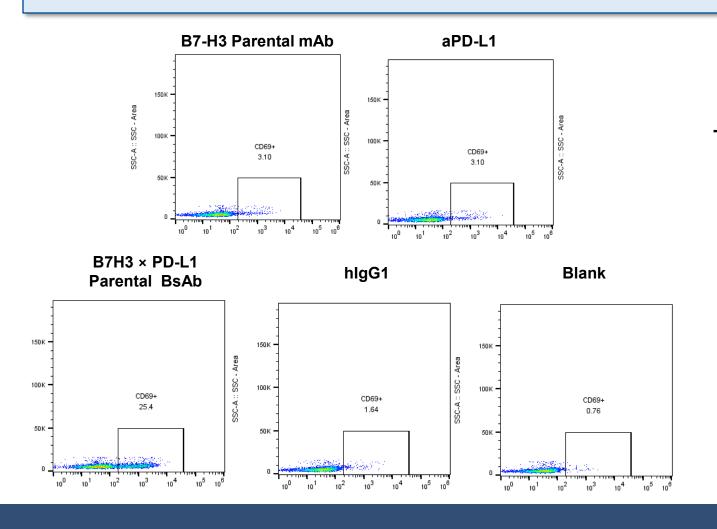



Bispecific Antibody Component of ATG-125 Enhances T Cell Activation and Blocks PD-1 / PD-L1 Interaction


ATG-125 Parental B7-H3 Antibody Induced Potent IL-2 and IFNy Production



Bispecific Antibody of ATG-125 Blocks PD1 / PD-L1 Interaction


Bispecific Antibody of ATG-125 Strongly Enhanced T Cell Activation and Induced Robust IL-2 Production

Bispecific Antibody Component of ATG-125 Activates Immune Cytotoxicity

■ Bispecific antibody of ATG-125 induced **significantly enhanced T-cell activation**, as shown by a higher frequency of CD69+ CD3+ T cells in a coculture with HCC827 cells and human PBMCs

T cell activation in the presence of HCC827 PBMC:HCC827=10:1 48h B7-H3 parent mAb PD-L1 mAb B7H3×PD-L1 parent BsAb hlgG1 Blank

Antibody Drug Conjugates (ADCs)

ATG-022 (CLDN18.2) CLDN18.2+ Gastric Cancer (GC)
Phase II and Other Solid Tumors

CLDN18.2 ADC with Efficacy Across the Widest Patient Population; BTD in GC

ATG-125 (B7-H3 x PD-L1)
Pre-clinical

Solid Tumors IO+ADC in One Drug

CD24
Pre-clinical

Solid Tumors

IO+ADC in One Drug

Immuno-Oncology (IO)

ATG-037 (CD73) CPI-resistant Melanoma and Phase Ib/II Non-small Cell Lung Cancer

Oral Bioavailable; Demonstrated Efficacy in CPI-resistant Patients

ATG-101 (PD-L1 x 4-1BB)

Phase I

Solid Tumors No Liver Toxicity

ATG-031 (CD24)

Phase I

Solid Tumors

First-in-class Myeloid Regulator

Autoimmune Diseases

ATG-201 (CD19 x CD3)
IND-enabling

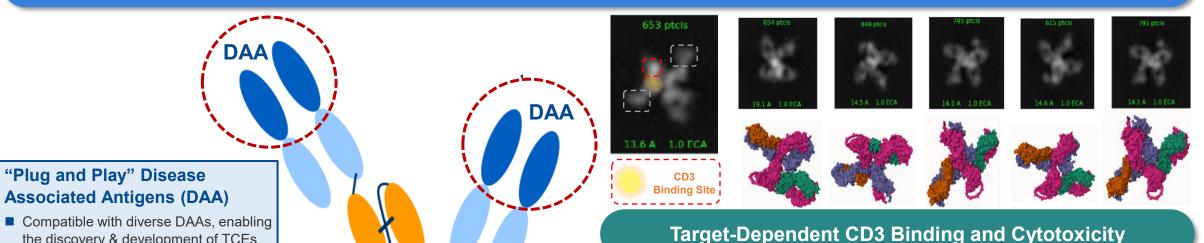
B Cell Driven Autoimmune Diseases

Deep B Cell Depletion with Low CRS

ATG-207 (Undisclosed Bifunctional Biologics)

Discovery

T Cell Driven Autoimmune Diseases


 $\label{eq:First-in-Class} First-in-Class; \\ Induces \, T_{reg} \, and \, T \, Cell \, Exhaustion$

T Cell Engagers (TCEs) B Cell Driven Autoimmune ATG-201 (CD19 x CD3) Deep B Cell Depletion with Low CRS IND-enabling Diseases ATG-106 (CDH6 x CD3) Ovarian Cancer and First-in-Class CDH6 TCE Kidney Cancer Pre-clinical ATG-112 (ALPPL2 x CD3) Gynecological Tumors and First-in-Class ALPPL2 TCE Pre-clinical Lung Cancer ATG-110 (LY6G6D x CD3) Microsatellite Stable (MSS) For IO-resistant Colorectal Cancer Pre-clinical Colorectal Cancer ATG-021 (GPRC5D x CD3) Multiple Myeloma Pre-clinical Acute Myeloid Leukemia and ATG-102 (LILRB4 x CD3) **Biparatopic** Chronic Myelomonocytic Leukemia Pre-clinical ATG-107 (FLT3 x CD3) Acute Myeloid Leukemia Pre-clinical ATG-115 (Undisclosed Liver Cancer **Bispecific TCE)** Novel TAA Discovered by Al Pre-clinical **Undisclosed Trispecific TCE** Metastatic Castration-resistant First-in-Class Discovery **Prostate Cancer Undisclosed Trispecific TCE** Small Cell Lung Cancer and First-in-Class Neuroendocrine Tumors Discovery

AnTenGager[™], a Novel Second Generation "2+1" TCE Platform with Steric Hindrance-masking Technology Enabling the Creation of TCEs with Enhanced Therapeutic Effect and Safety

Features of AnTenGager™ TCEs

the discovery & development of TCEs across multiple therapeutic areas

Bivalent Binding of DAA

■ Enables the targeting of **low-expressing target**

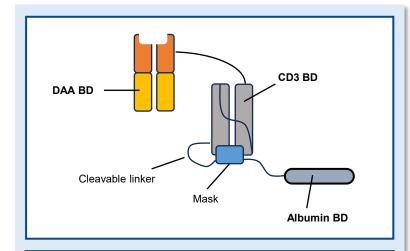
Proprietary CD3 Sequences (Patented)

- Binds to a unique conformational epitope (CD3εγ or CD3εσ complex), with fast-on-fast-off binding kinetics
- Stronger T cell dependent cytotoxicity and reduced cytokine release

Disabled Fc Knob-into-hole

Steric Hindrance Masking Technology

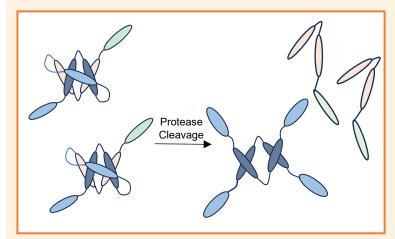
■ Reduced risk of hook effect and cytokine release syndrome (CRS)


CD3

Anti-DAA Anti-DAA T cell Target Cell Target Cell Target Cell Target Cell Target Cell Destruction

Masking Strategies of T Cell Engagers

Peptide Mask

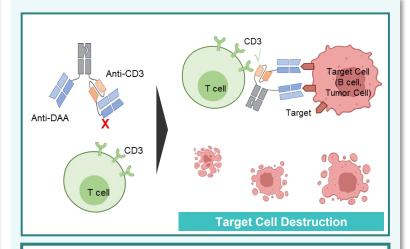


Tumor Microenvironment Dependent

Protease Dependent

Enzyme Cleavage Site Exposed

Structural Locking



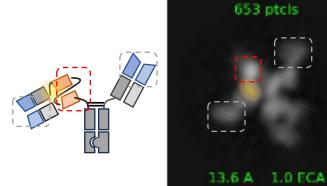
Tumor Microenvironment Dependent

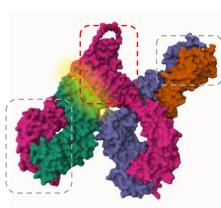
Protease Dependent

Conformation Change Induced by Enzymatic Cleavage, Creating CD3
Binding Site

Steric Hinderance (Antengene AnTenGager™)

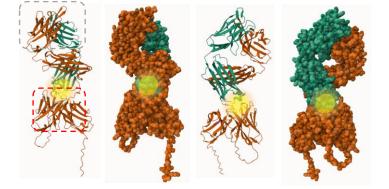
Independent to Tumor Microenvironment

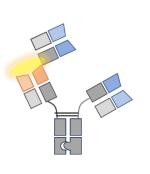

DAA Binding Dependent

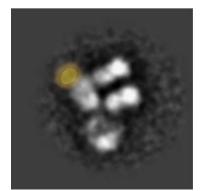

Target Binding Induces Conformational Changes, Exposing CD3 Binding Site

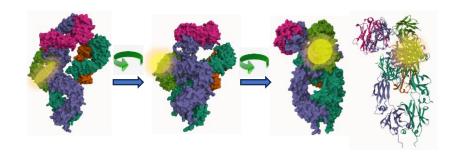
CD3 Binding Site of AnTenGager™ TCE is Concealed by DAA Fab Arm

AnTenGager™ Platform



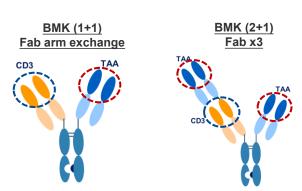




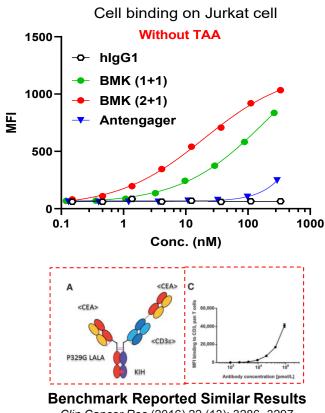


Fabx3 Platform

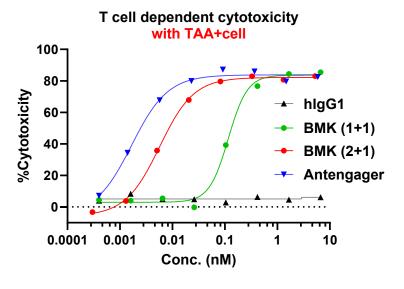
Segal, N.H. et al. Annals of Oncology, Volume 28, v134


 Fabx3 2+1 format maintains continuous exposure of CD3 binding sites due to the higher rigidity of its Fab arms

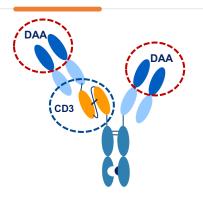
AnTenGager[™] TCEs Showed Target-dependent CD3 Binding and Cytotoxicity



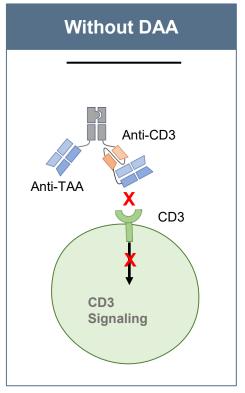
AnTenGager™ TCE Has Reduced CD3 Binding in the Absence of Target-Cross Linking and Enhanced Target-specific Cytotoxicity Compared with Benchmarks (BMKs)

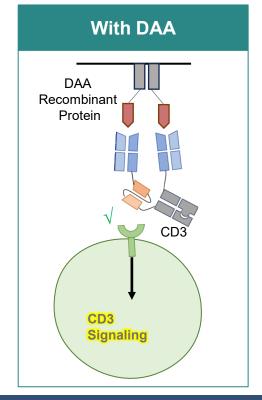


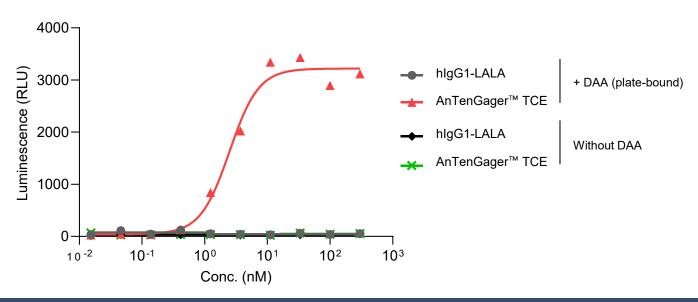
Cell Binding on Jurkat Cell (Without DAA)


Clin Cancer Res (2016) 22 (13): 3286-3297

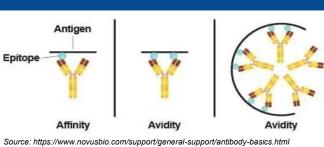
In Vitro Cytotoxicity (With DAA)



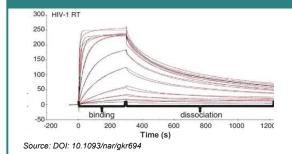

AnTenGager™ TCEs: Enhanced Safety Through DAA-dependent CD3 Activation

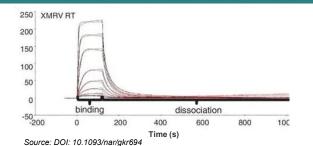


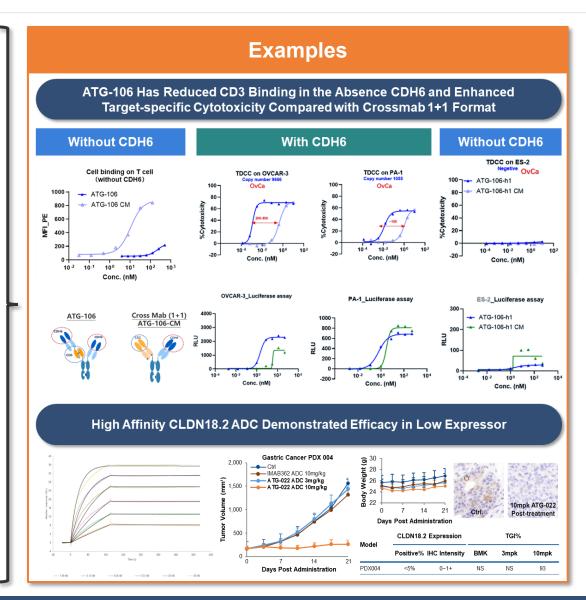
- Steric Hindrance and Masking Effect: The CD3 binding site is concealed by the DAA Fab arm before antigen binding, preventing unintended activation and enhancing safety
- Bivalent Binding of Disease-associated Antigen (DAA): Enables the targeting of low-expressing target with reduced risk of hook effect
- DAA-Dependent Activation: Upon DAA crosslinking, the CD3 binding arm is exposed, enabling specific and potent CD3+ T cell activation only in the presence of the target antigen


CD3 Signalling in Jurkat-NFAT-Luc T Cell in the Presence of DAA 10µg/mL Plate-bound DAA, 24h

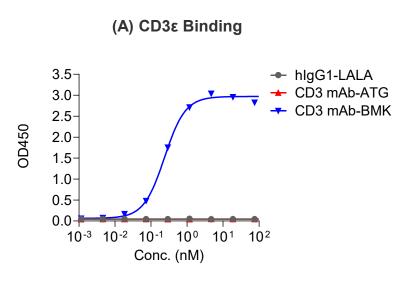
Evaluation and Selection of Antibody Affinity

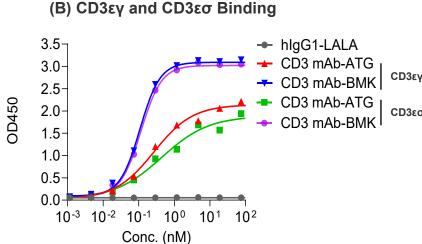


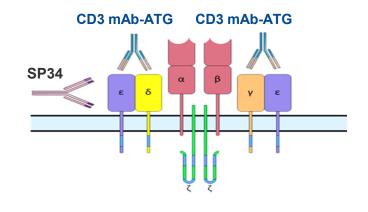

Affinity vs Avidity


Antibodies with bivalent or multivalent binding have higher avidity, which lowers the minimum target copy number required for achieving therapeutic effect

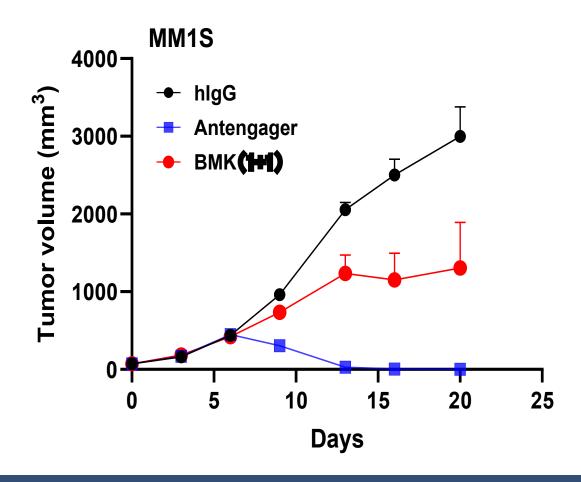
On Rate and Off Rate

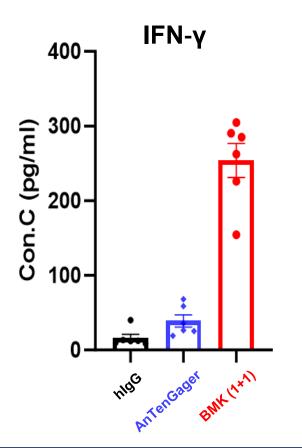

- The on-rate and off-rate together determine how long an antibody stays on the target cell and how long it can exert its function
- A **faster off-rate** shortens the functional duration of the antibody; a **fast on-rate** can compensate for a fast off-rate
- For TCEs, fast-on/fast-off CD3 binding results in less cytokine release and reduced T-cell exhaustion, while still maintaining good TDCC
- For ADCs, a longer residence time leads to more total antibody internalization, which is beneficial for bystander-killing effects

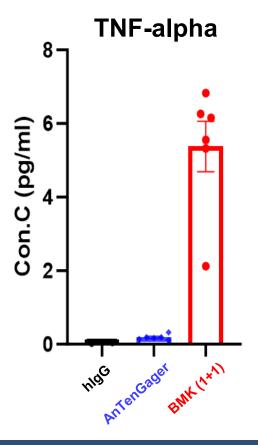



Proprietary Parental CD3 mAb for AnTenGager™ TCEs Demonstrated Differentiation Compared to SP34

- CD3 parental mAb from AnTenGager[™] TCE did not bind to CD3ε monomer in ELISA, while recognizing a conformational epitope on CD3εγ or CD3εσ complex
- Benchmark anti-CD3 (SP34) binds to a linear epitope on CD3ε monomer. SP34-derived CD3 arm was used in many competitor's TCE platforms/products
- Compared to SP34, AnTenGager parental CD3 mAb showed reduced activation of CD3 signaling, while inducing comparable or enhanced TDCC and reduced cytokine release

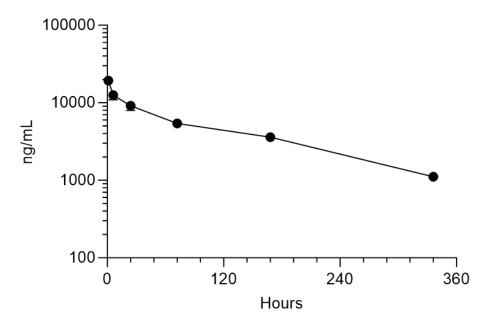






Enhanced Efficacy Compared to Benchmark

Significantly Reduced Release of Cytokines Compared to Benchmark Indicating Low Risk of CRS



AnTenGager™ TCEs: Favorable PK Profile and Long Half-Life in Mice Suggest Reduced Dosing Frequency and Improved Clinical Convenience

■ AnTenGager[™] TCEs demonstrated good PK profile in mice, with T_{1/2} of 100h-300h

Pharmacokinetics of AnTenGager™ TCEs in Mice

AnTenGager™ Platform Pipeline Overview

Proprietary Anti-CD3 Library

- Affinity: 10⁻⁶M to 10⁻⁹M
- Fast-on-fast-off binding kinetics
- Epitope: CD3εγ or CD3εσ complex

Anti-DAA Tool Box

- Autoimmune Diseases: CD19, CD20
- Hematological Malignancies: GPRC5D, LILRB4, FLT3...
- Solid Tumor: CLDN18.2, CDH6, GD2, LY6G6D, B7H7, B7H3, ALPPL2, undisclosed TAA...

Assets	Target	Indication	mAb Discovery	<i>In vitro</i> Efficacy	<i>In vivo</i> Efficacy	Developability	CMC/Tox	IND
ATG-201	CD19 x CD3	B Cell Related Autoimmune Diseases						
ATG-106	CDH6 x CD3	Ovarian Cancer & Kidney Cancer					•	
ATG-112	ALPPL2 x CD3	Gynecological Tumors and Lung Cancer						
ATG-102	LILRB4 x CD3	Acute Myeloid Leukemia & Chronic Myelomonocytic Leukemia						
ATG-021	GPRC5D x CD3	Multiple Myeloma						
ATG-110	LY6G6D x CD3	Microsatellite Stable (MSS) Colorectal Cancer						
ATG-107	FLT3 x CD3	Acute Myeloid Leukemia						
Undisclosed Bispecific TCE	Undisclosed	Liver Cancer						
Undisclosed Trispecific TCE	Undisclosed	Metastatic Castration-resistant Prostate Cancer						
Undisclosed Trispecific TCE	Undisclosed	Small Cell Lung Cancer and Neuroendocrine Tumors						

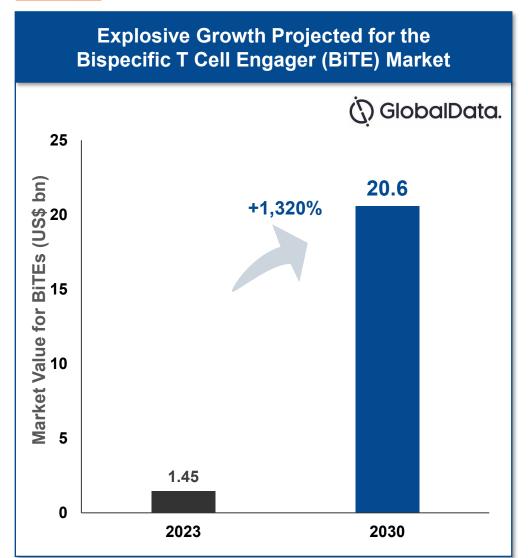
AnTenGager[™] TCE 2.0: Overcoming CRS Barriers and Preventing T Cell Exhaustion to Enable Broader, More Effective, and Safer Therapeutic Applications

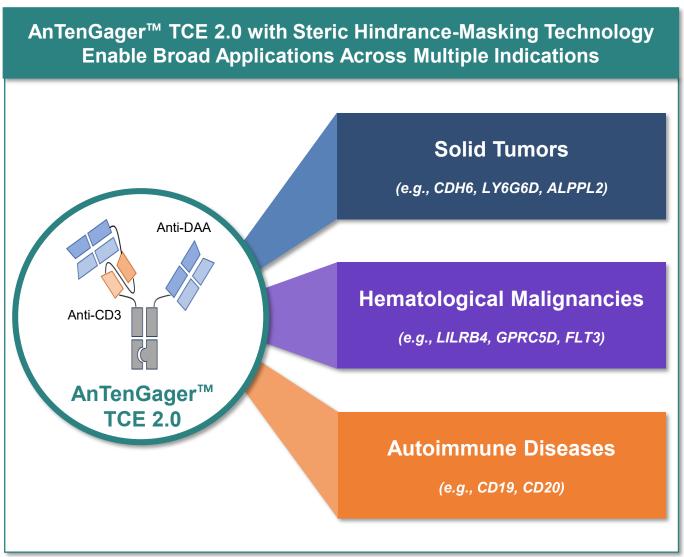
Minimizing Off-target T Cell Activation

Steric Hindrance Masking Technology

- Minimizes off-target T cell activation and cytokine release through target-dependent CD3 activation, enabling a safer therapeutic window and preventing T cell exhaustion
- Compared with protease-dependent shielding TCEs that require the tumor microenvironment, (e.g., Janux platform); AnTenGager™ TCEs are independent of the TME and can be used for broader indications beyond solid tumors

Minimizing On-target T Cell Activation

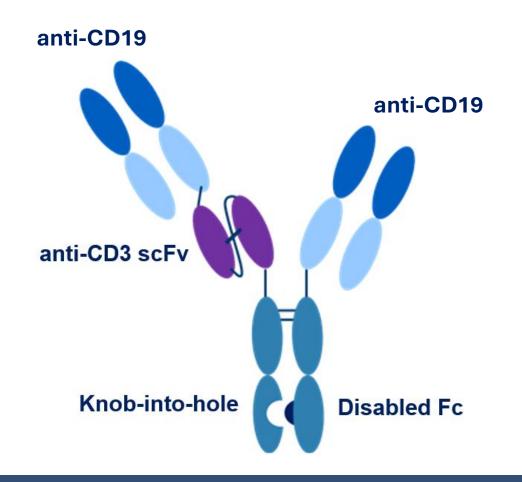

Proprietary Anti-CD3 Sequences

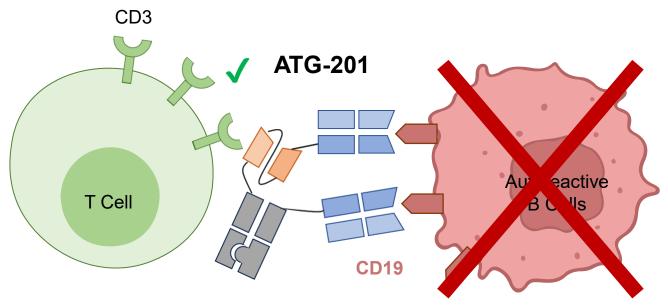

■ Minimizes on-target T cell activation and cytokine release by binding to a unique conformational epitope with fast-on-fast-off binding kinetics while maintaining potent T cell activation

Growing TCE Market – AnTenGager™ TCE 2.0 Leads the Way Globally with Significant Commercial Potential

Source: GlobalData

ATG-201


CD19 x CD3 T Cell Engager for B Cell Related Autoimmune Diseases


ATG-201: CD19 x CD3 TCE 2.0 With Ability to Deeply Deplete B Cells for the Treatment of Autoimmune Diseases

ATG-201 is a CD19 x CD3 TCE with Target Dependent T Cell Activation

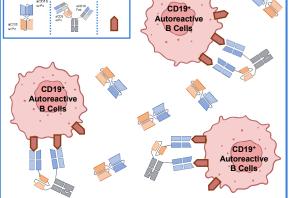
B Cell Depletion Therapy with ATG-201 to Treat Autoimmune Diseases

B Cell Depletion Leads to the Remission of Autoimmune Diseases

CD19 x CD3 T Cell Engagers for Autoimmune Diseases: Competitive Advantages of Second Generation "2+1" vs. First Generation "1+1" TCEs

	Second Generation TCE for Autoimmune Diseases
	ATG-201
Company	ANTENGENE
Format	aCD19 Fab ScFv
CD19 Binding	Bivalent
CD19 Dependent CD3 Activation	Yes (via Steric Hindrance; CD19-gated T cell activation reduces CRS risk)
In Vivo Efficacy in Autoimmune Diseases	Potent efficacy in SLE and MS model; Deep and sustained B cell depletion in mice (blood, lymph node, bone marrow, and spleen)
Half-life	mAb-like (~12.5 days in mice)
Pros & Cons	 Bivalent CD19 binding enables the targeting of CD19 low expressors CD19-gated T cell activation reducing CRS risk Potent efficacy Long half-life

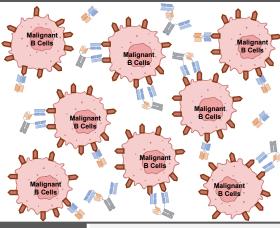
	First Generation	on TCEs for Oncolog	y	
TCE 1	TCE 2	TCE 3	TCE 4	
Company 1	Company 2	Company 3	Company 4	
aCD19 scFv	aCD19 aCD3	aCD19 aCD3	aCD19 scFv aHSA VHH aCD3 scFv	
Monovalent	Monovalent	Monovalent	Monovalent	
No	No	No	No	and
No autoimmune animal model data published	Not publicly disclosed	Not publicly disclosed	Sustained B cell depletion in blood in monkey	
Short, ~2.1 hours in clinic	~7 days	9-11 days	5-7 days in monkey	
 High potency, but higher CRS risk than ATG-201 Short half life leads to 24/7 dosing Poor drug stability: 48h in RT 	Clinically manageable CRS using 2-step-up dosing, but the low and monovalent CD19 binding affinity may lead to insufficient autoreactive B cell depletion	Low efficacy against naïve B cells <i>in vitr</i> o	High CRS risk and less potent efficacy against Naïve B compared to ATG-201	


2nd Generation "2+1" Bivalent TCEs: Superior to 1st Generation Designs in Autoimmune Disease, Engineered for Deeper and Safer CD19+ B Cell Depletion

Repurposed First-Generation "1+1" TCEs Are Obsolete in Autoimmune Diseases Due to Limited Efficacy and Higher Toxicity

"2+1" TCEs: Purpose-Built for Autoimmune Disease Engineered to Address Distinct Disease Biology of Autoimmune Diseases Not Targetable by Repurposed "1+1" TCEs from B Cell Malignancies

Autoimmune Diseases Autoreactive

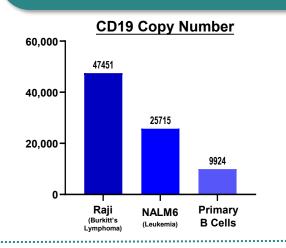


Role of TCE in Therapy

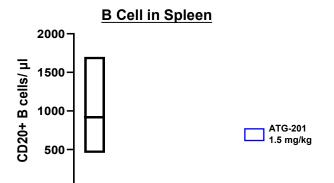
Eliminating dysregulated autoreactive CD19+ B cells producing autoantibodies that drive autoimmune diseases

Required TCE Affinity Level

Higher-affinity "2+1" TCEs are needed to effectively eliminate CD19+ B cells, which exist in much lower abundance compared to B cell malignancies **B** Cell Malignancies


Role of TCE in Therapy

Required TCE **Affinity Level**

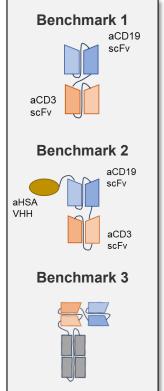

Eliminating malignant B cells that infiltrate bone marrow and disrupts normal hematopoiesis

Lower-affinity TCEs (e.g. "1+1" TCEs) are sufficient to effectively and rapidly deplete malignant B cells due to their high numbers

Bivalent Binding of Second-Generation "2+1" TCEs Enables Targeting of CD19-Low-Expressing B Cells in Autoimmune Diseases

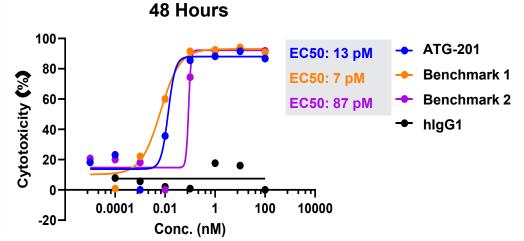
CD19 copy number expressed on the surface of autoimmune diseaserelated B cells is significantly lower that of malignant B cells

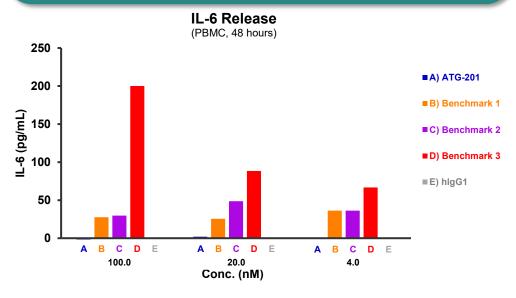
D5 D7 D14

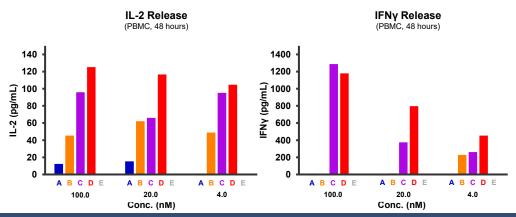

la G1 D3

Bivalent CD19 binding of ATG-201 enables deep and durable B cell depletion for the treatment of autoimmune diseases

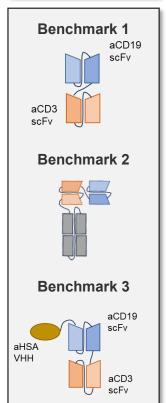

ATG-201 Shows Comparable or Enhanced Naïve B Cell Depletion and Reduced Cytokine Release vs. Repurposed 1st Generation TCEs *Ex Vivo*

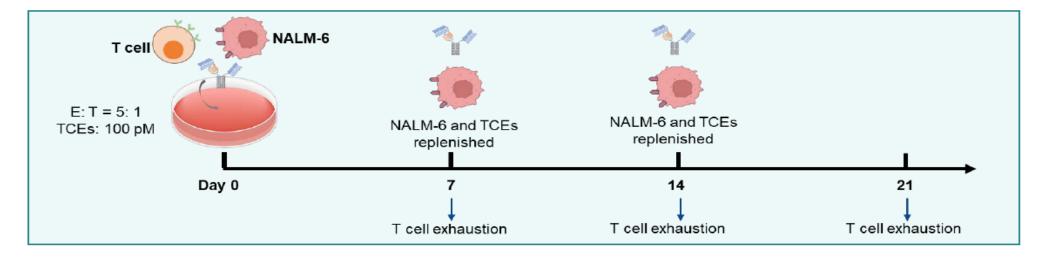


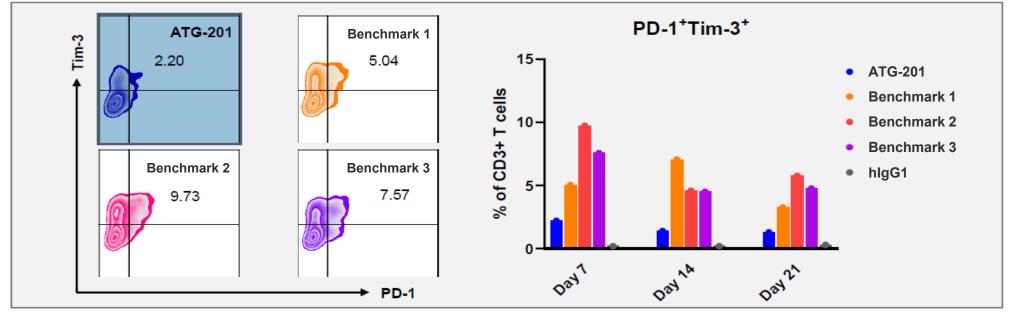


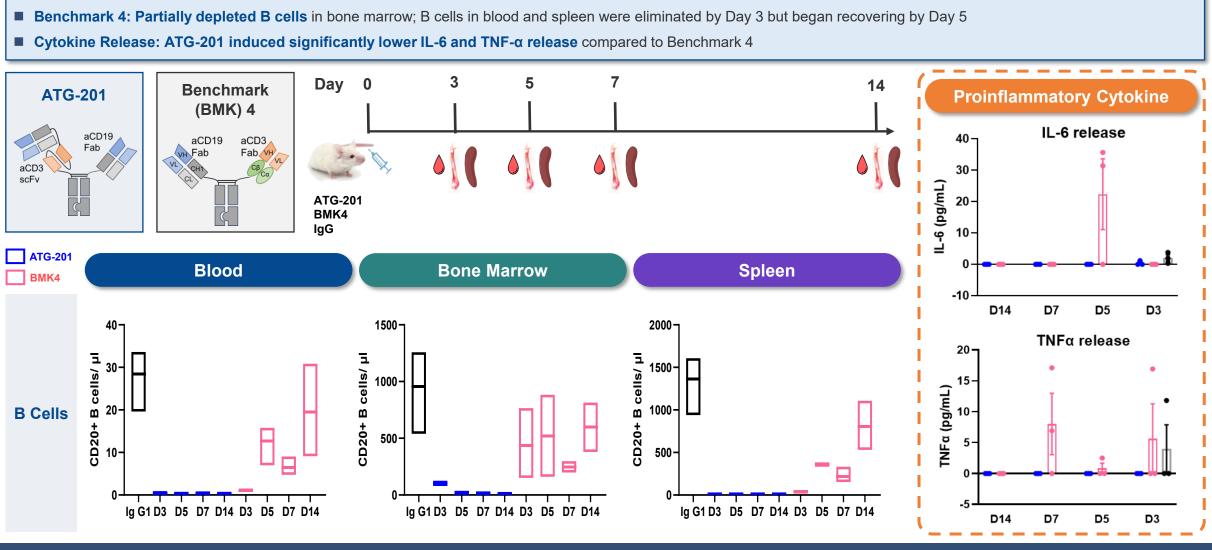

Comparable or Enhanced Naïve B Cell Depletion vs. Benchmarks

Reduced Cytokine Release vs. Benchmarks

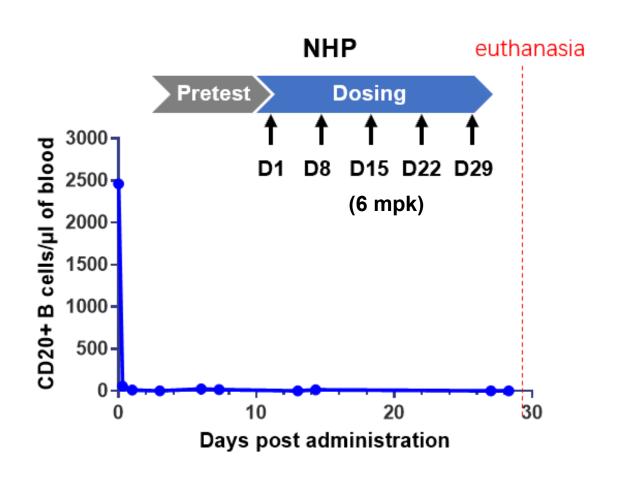


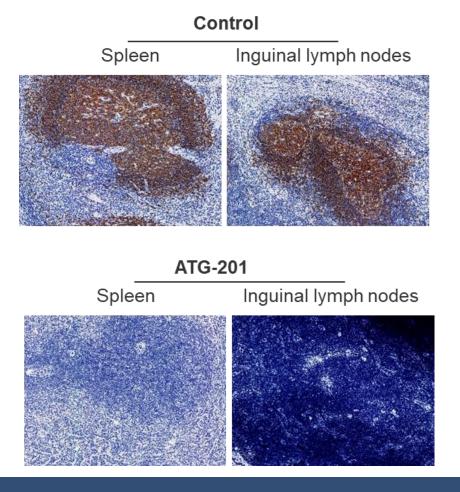



ATG-201 Induced Less T Cell Exhaustion vs First Generation TCEs



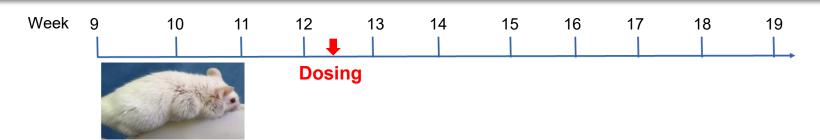
ATG-201 Demonstrated Deeper and More Durable *In Vivo* B Cell Depletion Compared to Benchmark in CD34+ Cell Humanized Mice

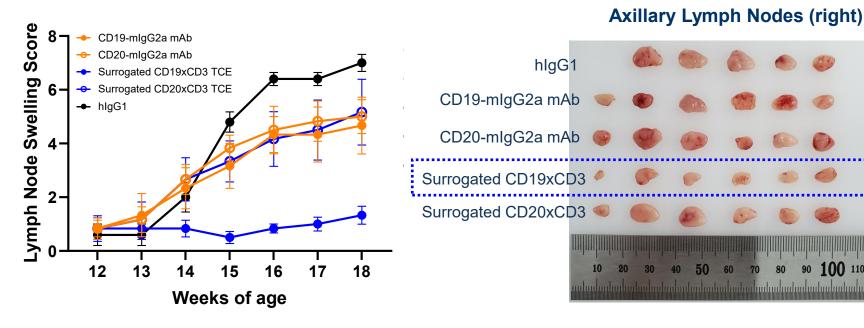

■ ATG-201: A single dose completely and deeply depleted B cells in CD34 humanized mice, with no detectable B cells in blood, bone marrow or spleen 14 days post-treatment

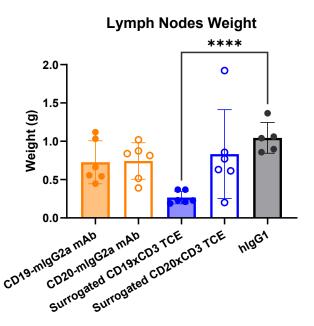


ATG-201 Surrogate Antibody in NHP Demonstrated Low Cytokine Production and Complete B Cell Depletion

- Repeated dosing of ATG-201 surrogate (1mpk, 3mpk, 6mpk) is well tolerated in NHP, with low cytokine production observed
- ATG-201 surrogate induced complete B cell depletion in peripheral blood, spleen and lymph nodes






CD19 x CD3 TCE Demonstrates Potent Efficacy in Mouse MRL-Ipr Spontaneous Systemic Lupus Erythematosus (SLE) *In Vivo* Model

■ The surrogated CD19 x CD3 TCE demonstrated enhanced efficacy in suppressing disease progression than CD20 x CD3 TCE, and CD19 or CD20 monoclonal antibody in spontaneous SLE mice

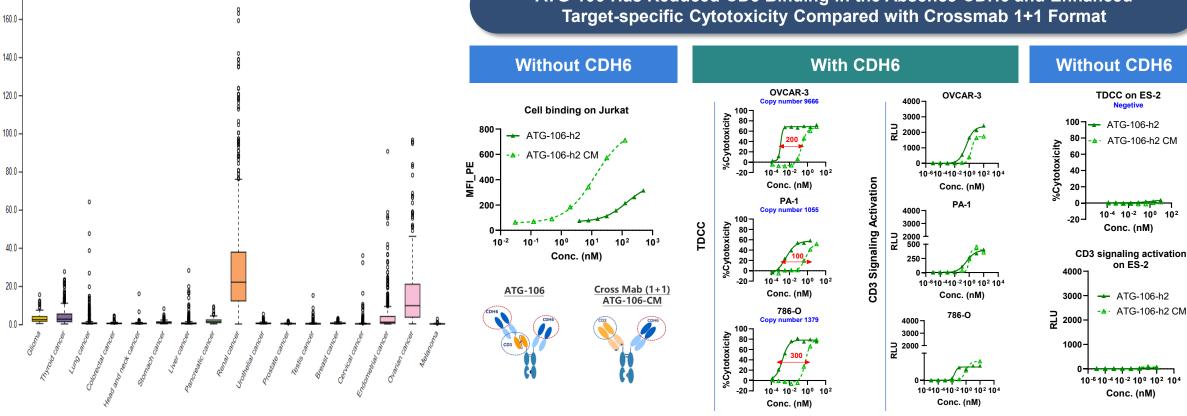
^{*} Lymph nodes weight includes superficial cervicals, axillary, brachial and inguinal lymph nodes.

ATG-106

CDH6 x CD3 T Cell Engager for Ovarian Cancer & Kidney Cancer

ATG-106: Globally First-in-class CDH6 x CD3 TCE 2.0 for the Treatment of Ovarian and Kidney Cancers

CDH6 is a TAA Highly Expressed in Solid Tumors Such as Ovarian Cancer, Renal Cancer, and

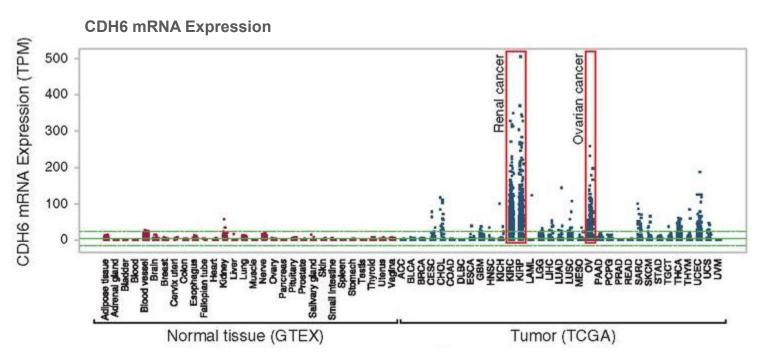


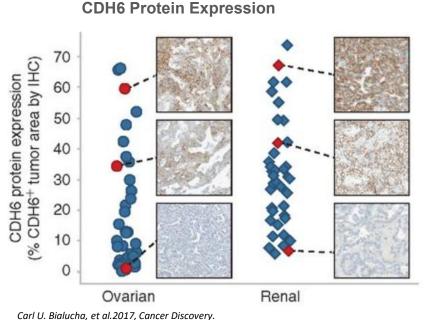
TCGA Data Set

180.0

- First-in-class Opportunity: No CDH6 x CD3 TCE competitors in development yet
- Compelling Preclinical Profile: Demonstrated CDH6-dependent T cell activation, potent in vitro and in vivo anti-tumor efficacy, and good developability, well tolerated in NHP
- IND Submission Timeline: Planned for Q1 2027

ATG-106 Has Reduced CD3 Binding in the Absence CDH6 and Enhanced Target-specific Cytotoxicity Compared with Crossmab 1+1 Format

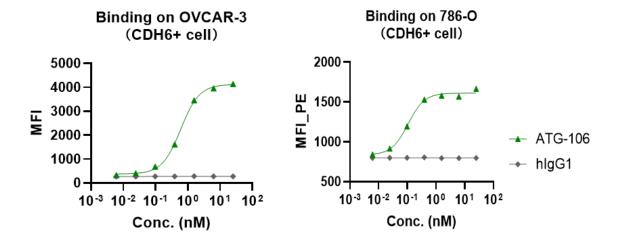


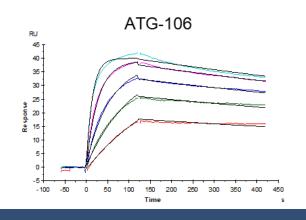

Cadherin-6 (CDH6) TCE as a Promising Approach for Ovarian Cancer and Kidney Cancer

Cadherin-6 (CDH6)

- Encodes a type II classical cadherin from the cadherin superfamily. Involves in cell-cell adhesion and signal pathway, enhance epithelial–mesenchymal transition and promotes cell migration and invasion
- Positively expressed in ovarian cancer (OV), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), some other tumor types like thyroid cancer (THCA), cholangiocarcinoma (CHOL), hepatocellular cancer (LIHC), uterine corpus endometrial carcinoma (UCEC), lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD) and sarcoma (SARC)
- Limited expression in normal tissue

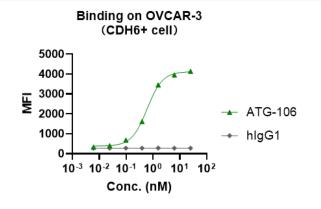


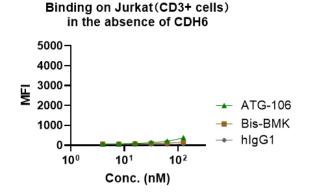

ATG-106 Bound to CDH6 with High Affinity

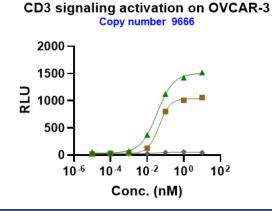


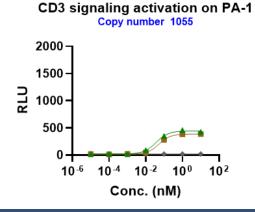
- ATG-106 showed high binding affinity (sub-nM EC50) to CDH6 positive cells and protein, with EC5 as the binding epitope
- ATG-106 did not cross-react with other proteins in the CDH (Cadherin) family

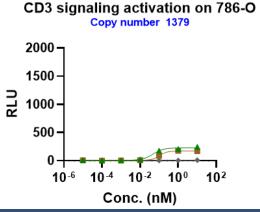
	CDH6 epitope	
ATG-106	EC5	
Bis-BMK	EC3	

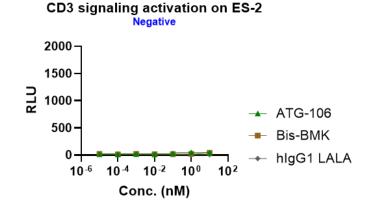


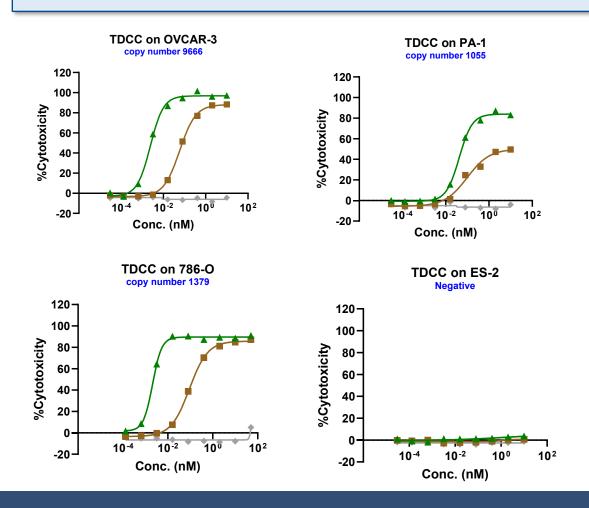


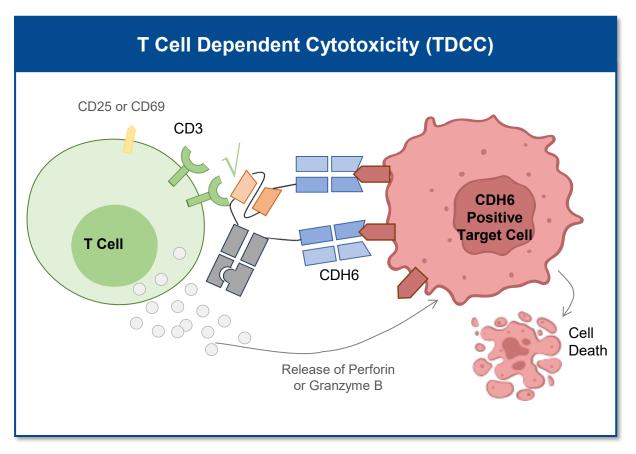

ATG-106 Binds To and Activates T Cells in a CDH6-dependent Manner




- ATG-106 (parental) and its humanized candidates (ATG-106 h1, ATG-106 h2, and ATG-106 h3) showed **high binding affinity (sub-nM EC50) to**CDH6 positive cells
- ATG-106 and ATG-106-h demonstrated little binding to CD3+ cells before CDH6 crosslinking, while they potently activated CD3 signaling in the presence of CDH6 positive cells

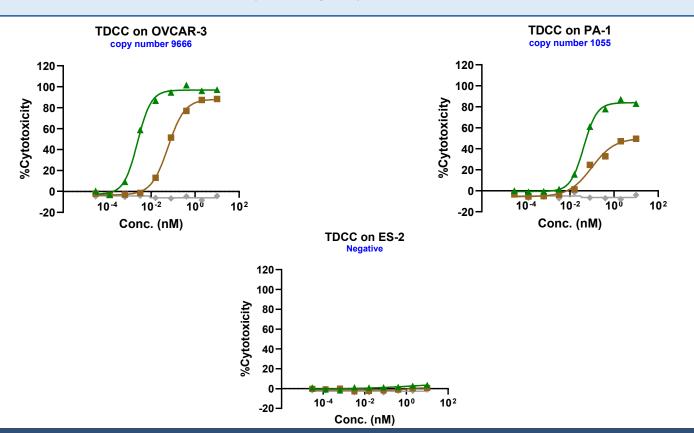




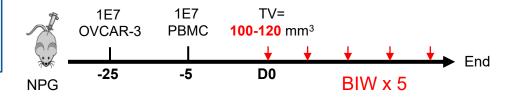


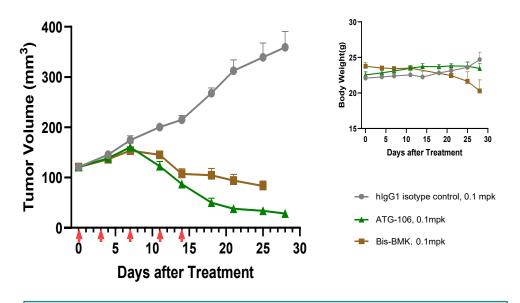
ATG-106 Exhibited Potent T Cell Dependent Cytotoxicity on CDH6+ Cells

- ATG-106 showed potent **T-cell dependent cytotoxicity (TDCC) against CDH6+ cells** (ovcar-3, PA-1 and 786-O)
- No TDCC was observed on CDH6 negative cells (ES-2)



ATG-106 (CDH6 x CD3 TCE) Exhibited Potent T Cell Dependent Cytotoxicity on Ovarian Cancer and Promising *In Vivo* Anti-tumor Activity



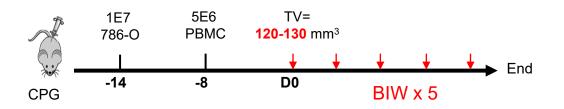

Potent T Cell Dependent Cytotoxicity on Ovarian Cancer Cell Line

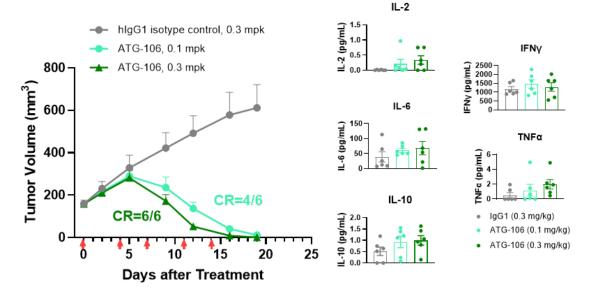
- ATG-106 showed potent T-cell dependent cytotoxicity (TDCC) against OVCAR-3 and PA-1 (CDH6+)
- No TDCC was observed on ES-2 (CDH6 negative)

Promising In Vivo Anti-tumor Activity

■ ATG-106 demonstrated potent *in vivo* efficacy in PBMC-humanized OVCAR-3 CDX mouse models

ATG-106 (CDH6 x CD3 TCE) Exhibited Potent T Cell Dependent Cytotoxicity on Renal Cancer Carcinoma and Promising *In Vivo* Anti-tumor Activity

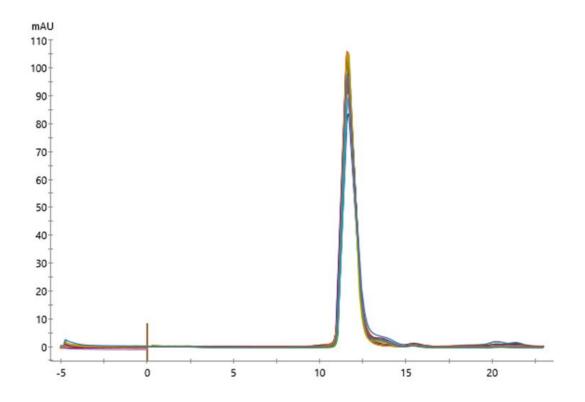



Potent T Cell Dependent Cytotoxicity on Renal Cell Carcinoma Cell Line

■ ATG-106 showed potent **T-cell dependent cytotoxicity (TDCC) against 786-O cells** (CDH6 positive)

TDCC on 786-0 copy number 1379 120 ¬ 100-**%Cytotoxicity** → ATG-106 80-Bis-BMK 60-→ hlgG1 40-20-0 -20- 10^2 Conc. (nM)

Promising In Vivo Anti-tumor Activity



■ ATG-106 demonstrated potent *in vivo* efficacy, and low cytokines release in PBMC-humanized 786-O CDX mouse models

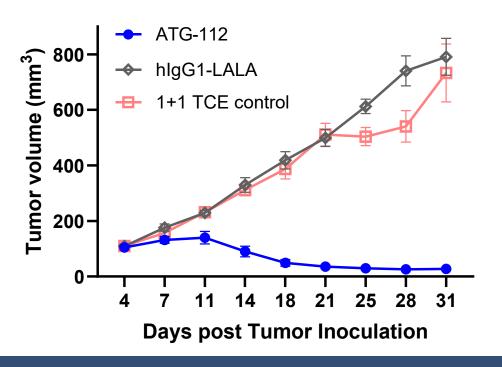
ATG-106 Demonstrated Great Developability

- ATG-106 candidates demonstrated a melting temperature (Tm) of >68 °C
- ATG-106 at 10 mg/mL showed **great stability under multiple stress conditions** (4 °C , 25 °C and 40 °C for 2 weeks and 4 weeks; Acceleration 3 days; Freeze-thaw 5 cycles)

ATG-112

ALPPL2 x CD3 T Cell Engager for Gynecological Tumors and Lung Cancer

ATG-112: ALPPL2 x CD3 TCE 2.0 for the Treatment of Gynecological Cancer, Non-small Cell Lung Cancer and Pancreatic Ductal Adenocarcinoma


- First-in-class Opportunity: No ALPPL2 x CD3 TCE competitors in clinical-stage yet
- Compelling Preclinical Profile: Demonstrated ALPPL2-dependent T cell activation, potent in vitro and in vivo anti-tumor efficacy
- PCC Nomination: Planned for Q1 2026

ALPP/ALPG is Highly Expressed in Multiple Tumor Types with Restricted Normal Tissue Expression

Frequency of PLAP positive staining (%) Embryonal Seminoma Carcinoma Embryonal carcinoma of the testis Endometrioid endometrial carcinoma Endometrioid carcinoma of the ovary Serous carcinoma of the ovary Endometrial serous carcinoma High-grade Serous Carcinosarcoma of the ovary Adenocarcinoma Carcinoma of the Carcinosarcoma of the uterus of the Pancreas Gastric adenocarcinoma, intestinal type Pancreatic/Ampullary adenocarcinoma Adenocarcinoma of the esophagus Gastric adenocarcinoma, mixed type Urothelial carcinoma, pT2-4 G3 Ductal adenocarcinoma of the pancreas Endometrial carcinoma, high grade, G3 Gastric of the Luna Adenocarcinoma Endometrial clear cell carcinoma Mucinous carcinoma of the ovary Gastric adenocarcinoma, diffuse type Adenocarcinoma of the colon Positive Clear cell carcinoma of the ovary Adenocarcinoma, NOS (Papillary Cystadenocarcinoma) Strong Appendix, neuroendocrine tumor (NET)

ATG-112 Demonstrated Promising Pre-clinical Anti-tumor Efficacy

Tumor Volume ± SEM

ALPP and ALPG: Promising Therapeutic Targets for Advanced Solid Tumors

ALPP and ALPPL2: Closely Related GPI-Anchored Proteins with High Expression in Cancer

ALP (Alkaline Phosphatase)

- Membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values, release inorganic phosphate
- GPI-anchored protein
- Dimeric enzymes

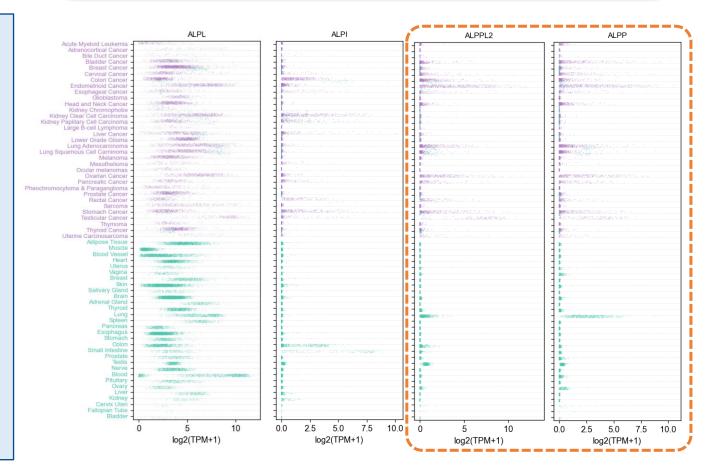
Human ALP Isoenzymes

ALPL (Tissue-nonspecific Alkaline Phosphatase)

- 57% homology with ALPPL2
- Expressed throughout the body, especially abundant in liver, bone, kidney

ALPI (Intestinal Alkaline Phosphates)

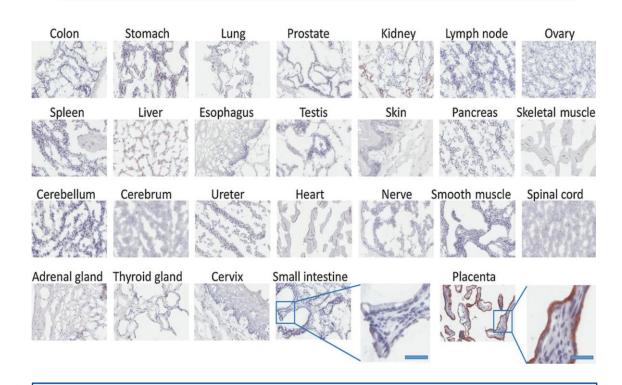
- 87% homology with ALPPL2
- High level expression in intestinal tissue


ALPP (Placental Alkaline Phosphatase), 95% Homology with ALPPL2

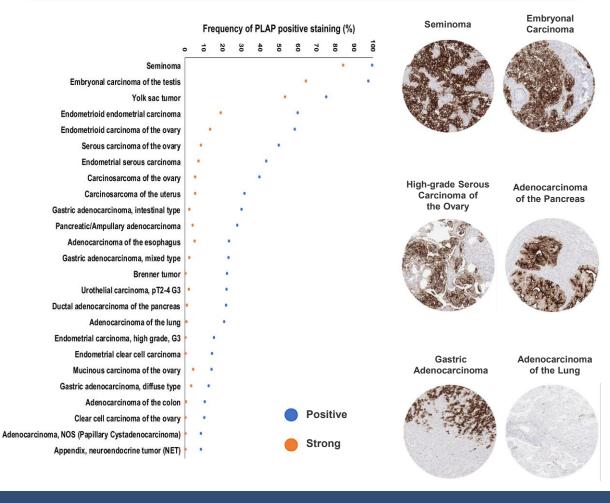
- High level in placenta
- High expressed in multiple cancers

ALPG (Germ Cell Alkaline Phosphates, Placental-like ALP), ALPPL2

- High level in placenta. Trace amounts in the testis and thymus
- High expressed in multiple cancers

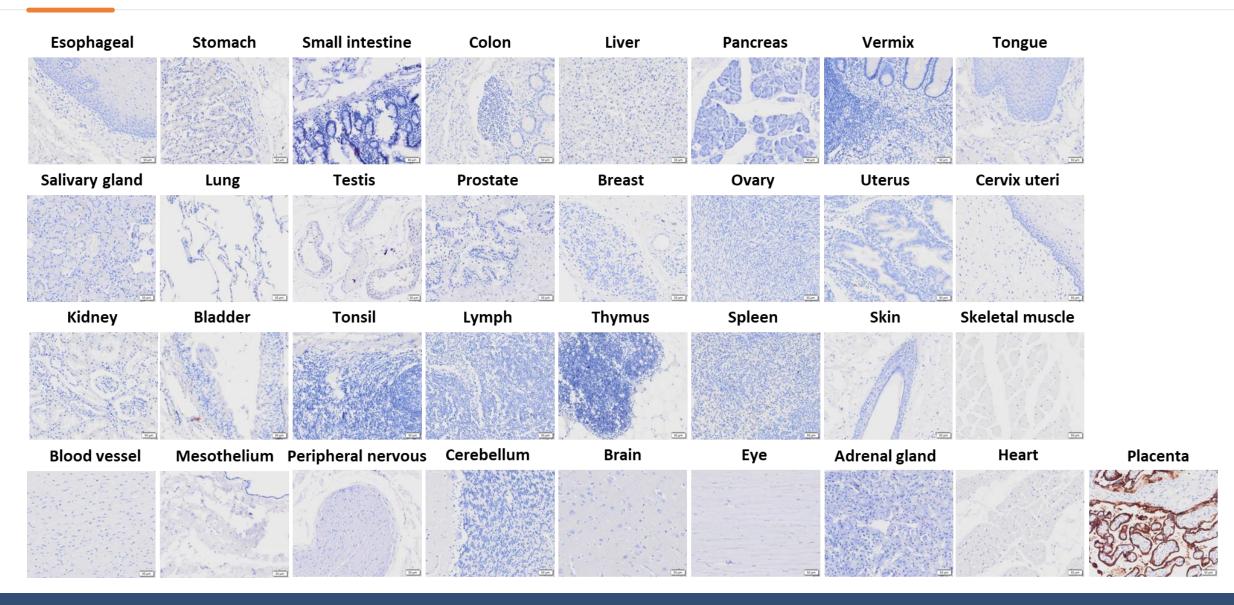

ALPP and ALPG: Similar Gene Expression Patterns Across Tissues and Tumors

ALPP and ALPG: Promising Therapeutic Targets for Advanced Solid Tumors

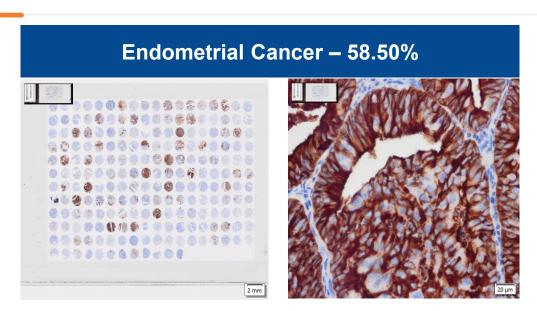


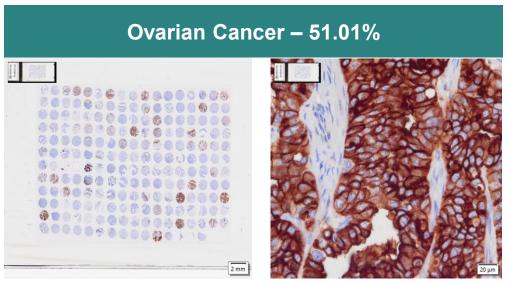
ALPP / ALPG in Normal Tissues

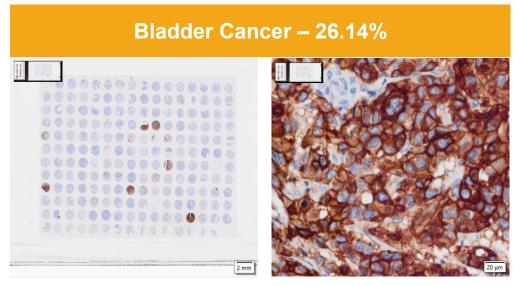
■ The restricted expression of ALPP and ALPG in normal tissues and their accessibility on the cancer cell surface supports their potential as targets for cancer therapeutics

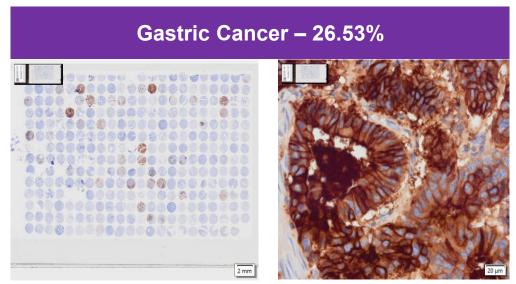

ALPP / ALPG in Cancer Tissues

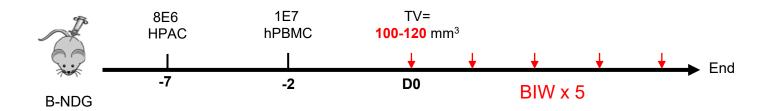
The Expression of ALPP/G in Normal Tissue is Restricted to the Placenta

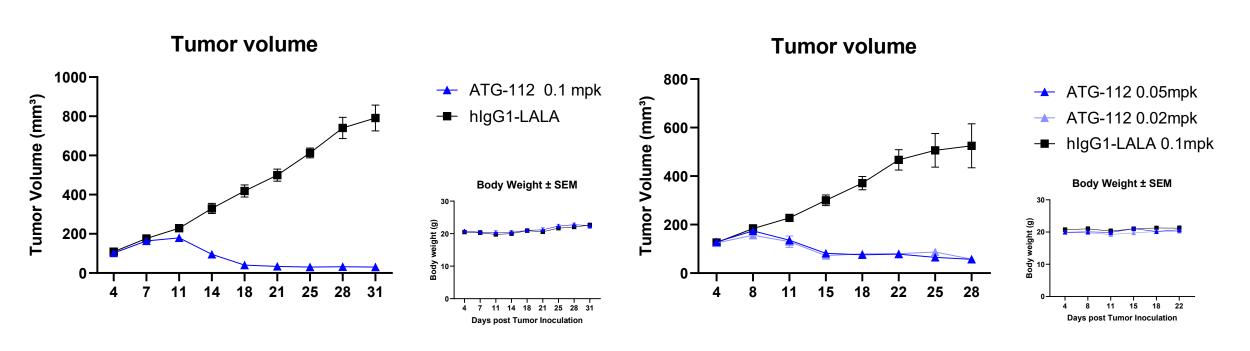

In-house Tissue Microarray Experiment





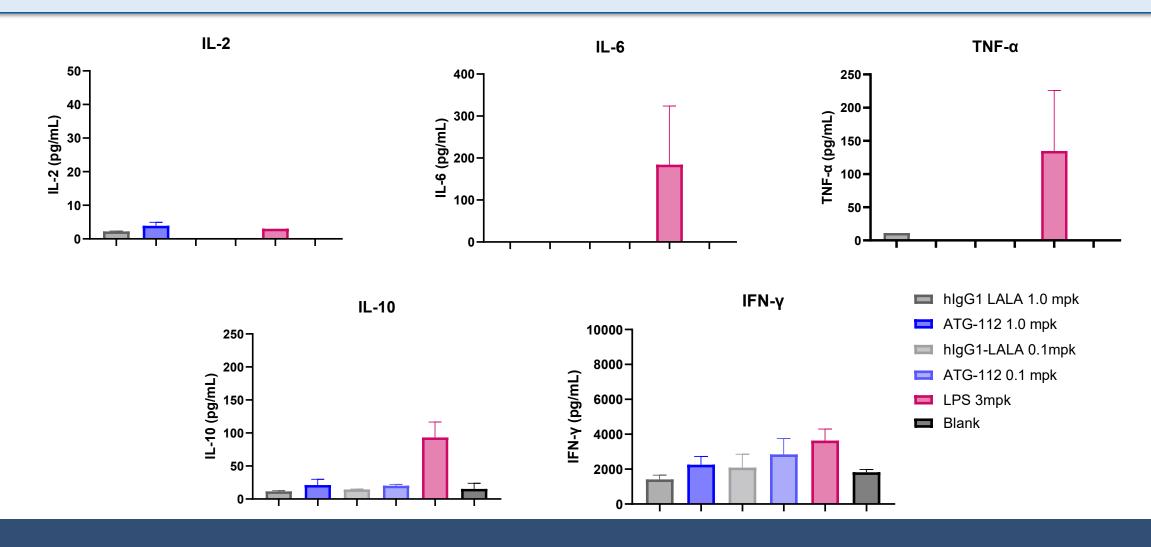

The Expression Profile of ALPP/G in Tumors: Microarray Experiment





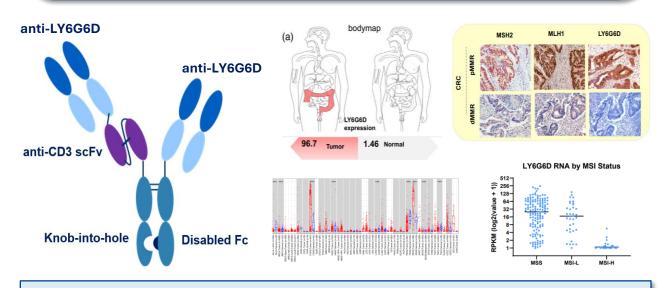
ATG-112 Demonstrated Promising In Vivo Anti-tumor Activity

■ ATG-112 achieved **potent tumor suppression** across various doses (0.1, 0.05, and 0.02 mg/kg)



ATG-112 Demonstrated Low Cytokine Release and Controllable CRS Risk

■ ATG-112 candidates exhibited a favorable in vivo safety profile, characterized by low cytokine release and controllable CRS risk



Other TCEs for Solid Tumors

Other AnTenGager™ TCEs for Solid Tumors

ATG-110: LY6G6D x CD3 TCE 2.0 for MSS Colorectal Cancer

- LY6G6D is a phosphatidylinositol (GPI)—anchored cell surface protein with expression highly specific to colorectal cancer
- LY6G6D has much higher expression level in colorectal cancer tissue compared to normal tissue, predominantly in pMMR/MSS colorectal cancer which has primary resistance to ICI treatment
- ATG-110 demonstrated potent efficacy and good stability
- IND Submission: Planned for H1 2027

Undisclosed AnTenGager™ TCE Programs

ATG-115

Undisclosed TAA
Bispecific TCE for
Liver Cancer

- ✓ Novel tumor associated antigen (TAA) identified by AI + bioinformatics
- ✓ Highly expressed in liver cancer with low normal tissue expression

2 Undisclosed Trispecific TCEs

- Targeting metastatic castrationresistant prostate cancer (mCRPC) and small cell lung cancer (SCLC) / neuroendocrine tumors, respectively
- √ First-in-class Potential
- ✓ Enhancing efficacy with reduced toxicity

Discovery and Pre-clinical Highlights

Antibody Drug Conjugates (ADCs)

ATG-022 (CLDN18.2) CLDN18.2+ Gastric Cancer (GC)

Phase II and Other Solid Tumors

CLDN18.2 ADC with Efficacy Across the Widest Patient Population; BTD in GC

ATG-125 (B7-H3 x PD-L1)
Pre-clinical

Solid Tumors IO+ADC in One Drug

CD24
Pre-clinical

Solid Tumors

IO+ADC in One Drug

Immuno-Oncology (IO)

ATG-037 (CD73) CPI-resistant Melanoma and Phase Ib/II Non-small Cell Lung Cancer

Oral Bioavailable; Demonstrated Efficacy in CPI-resistant Patients

ATG-101 (PD-L1 x 4-1BB)

Phase I

Solid Tumors

No Liver Toxicity

ATG-031 (CD24)
Phase I

Solid Tumors

First-in-class Myeloid Regulator

Autoimmune Diseases

ATG-201 (CD19 x CD3)
IND-enabling

B Cell Driven Autoimmune Diseases

Deep B Cell Depletion with Low CRS

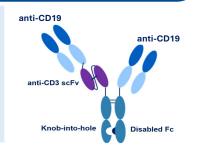
ATG-207 (Undisclosed Bifunctional Biologics) Discovery

T Cell Driven Autoimmune Diseases

First-in-Class; Induces T_{req} and T Cell Exhaustion

T Cell Engagers (TCEs) B Cell Driven Autoimmune ATG-201 (CD19 x CD3) Deep B Cell Depletion with Low CRS IND-enabling Diseases ATG-106 (CDH6 x CD3) Ovarian Cancer and First-in-Class CDH6 TCE Pre-clinical Kidney Cancer Gynecological Tumors and ATG-112 (ALPPL2 x CD3) First-in-Class ALPPL2 TCE Pre-clinical Lung Cancer ATG-110 (LY6G6D x CD3) Microsatellite Stable (MSS) For IO-resistant Colorectal Cancer Pre-clinical Colorectal Cancer ATG-021 (GPRC5D x CD3) Multiple Myeloma Pre-clinical ATG-102 (LILRB4 x CD3) Acute Myeloid Leukemia and **Biparatopic** Chronic Myelomonocytic Leukemia Pre-clinical ATG-107 (FLT3 x CD3) Acute Myeloid Leukemia Pre-clinical ATG-115 (Undisclosed Bispecific TCE) Liver Cancer Novel TAA Discovered by Al Pre-clinical **Undisclosed Trispecific TCE** Metastatic Castration-resistant First-in-Class Discovery **Prostate Cancer Undisclosed Trispecific TCE** Small Cell Lung Cancer and First-in-Class Neuroendocrine Tumors Discovery

Next-Generation Therapies for B Cell- and T Cell-Driven Autoimmune Diseases

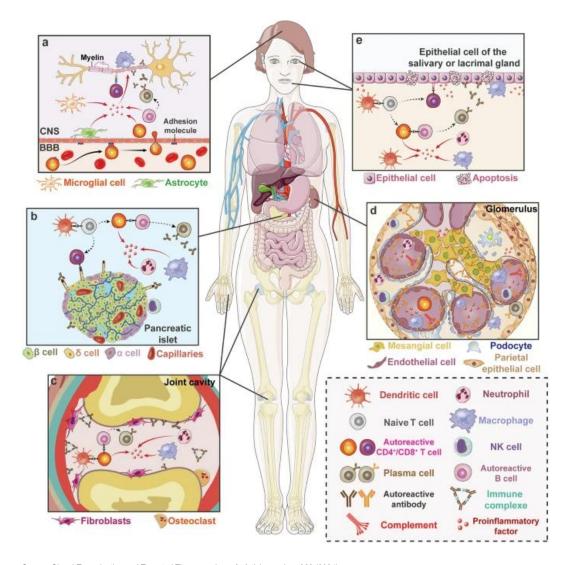

Antengene's Autoimmune Diseases Pipeline

B Cell Driven Autoimmune Diseases

ATG-201 – CD19 x CD3 TCE

Deeper and More Durable *In Vivo* B Cell Depletion with Significantly Lower Cytokine Release Compared to Benchmark

IND Targeting Q4 2025



T Cell Driven Autoimmune Diseases

ATG-207 – First-in-Class Bifunctional Biologics

- Autoreactive T cells are known to cause autoimmune diseases like type 1 diabetes, rheumatoid arthritis, ankylosing spondylitis, and atopic dermatitis
- ATG-207 is designed to induce strong T_{reg} differentiation and T cell exhaustion, thereby alleviating T cell-related inflammation in autoimmune diseases and achieving therapeutic goals

Pre-clincal Data will be Presented in Key Conferences in 2026

Source: Signal Transduction and Targeted Therapy volume 9, Article number: 263 (2024)

Q&A Session

Closing Remarks

Jay Mei, M.D., Ph.D. Founder, Chairman, and Chief Executive Officer

In-house Developed Drugs Entering Pivotal Trials

Multi-market Revenue Ramp Up

Robust R&D
Engine Driving
Novel Drug
Innovation

